Show simple item record

dc.contributor.authorDi Vincenzo, Maria
dc.contributor.authorTiraferri, Alberto
dc.contributor.authorMusteata, Valentina-Elena
dc.contributor.authorChisca, Stefan
dc.contributor.authorDeleanu, Mihai
dc.contributor.authorRicceri, Francesco
dc.contributor.authorCot, Didier
dc.contributor.authorNunes, Suzana Pereira
dc.contributor.authorBarboiu, Mihail
dc.date.accessioned2021-09-08T07:51:52Z
dc.date.available2021-09-08T07:51:52Z
dc.date.issued2021-09-07
dc.identifier.citationDi Vincenzo, M., Tiraferri, A., Musteata, V.-E., Chisca, S., Deleanu, M., Ricceri, F., … Barboiu, M. (2021). Tunable membranes incorporating artificial water channels for high-performance brackish/low-salinity water reverse osmosis desalination. Proceedings of the National Academy of Sciences, 118(37), e2022200118. doi:10.1073/pnas.2022200118
dc.identifier.issn0027-8424
dc.identifier.issn1091-6490
dc.identifier.doi10.1073/pnas.2022200118
dc.identifier.doi10.1073/pnas.2022200118%7C1of8
dc.identifier.urihttp://hdl.handle.net/10754/671121
dc.description.abstractMembrane-based technologies have a tremendous role in water purification and desalination. Inspired by biological proteins, artificial water channels (AWCs) have been proposed to overcome the permeability/selectivity trade-off of desalination processes. Promising strategies exploiting the AWC with angstrom-scale selectivity have revealed their impressive performances when embedded in bilayer membranes. Herein, we demonstrate that self-assembled imidazole-quartet (I-quartet) AWCs are macroscopically incorporated within industrially relevant reverse osmosis membranes. In particular, we explore the best combination between I-quartet AWC and m-phenylenediamine (MPD) monomer to achieve a seamless incorporation of AWC in a defect-free polyamide membrane. The performance of the membranes is evaluated by crossflow filtration under real reverse osmosis conditions (15 to 20 bar of applied pressure) by filtration of brackish feed streams. The optimized bioinspired membranes achieve an unprecedented improvement, resulting in more than twice (up to 6.9 L·m−2·h−1·bar−1) water permeance of analogous commercial membranes, while maintaining excellent NaCl rejection (>99.5%). They show also excellent performance in the purification of low-salinity water under low-pressure conditions (6 bar of applied pressure) with fluxes up to 35 L·m−2·h−1and 97.5 to 99.3% observed rejection.
dc.description.sponsorshipThis work was supported by Agence Nationale de la Recherche grant number ANR-18-CE06-0004-02, WATERCHANNELS, and grant number ERANETMED 2-72-357, IDEA.
dc.publisherProceedings of the National Academy of Sciences
dc.relation.urlhttp://www.pnas.org/lookup/doi/10.1073/pnas.2022200118
dc.relation.urlhttps://europepmc.org/articles/pmc8449377?pdf=render
dc.rightsArchived with thanks to Proceedings of the National Academy of Sciences
dc.rightsThis file is an open access version redistributed from: https://europepmc.org/articles/pmc8449377?pdf=render
dc.titleTunable membranes incorporating artificial water channels for high-performance brackish/low-salinity water reverse osmosis desalination
dc.typeArticle
dc.contributor.departmentBiological and Environmental Science and Engineering (BESE) Division
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentNanostructured Polymeric Membrane Lab
dc.identifier.journalProceedings of the National Academy of Sciences
dc.rights.embargodate2022-03-07
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionInstitut Européen des Membranes, Adaptive Supramolecular Nanosystems Group, University of Montpellier, École Nationale Supérieure de Chimie de Montpellier, CNRS, F-34095 Montpellier, France.
dc.contributor.institutionDepartment of Environment, Land and Infrastructure Engineering, Politecnico di Torino, 10129 Torino, Italy.
dc.identifier.volume118
dc.identifier.issue37
dc.identifier.pagese2022200118
kaust.personMusteata, Valentina-Elena
kaust.personChisca, Stefan
kaust.personNunes, Suzana Pereira
dc.date.accepted2021-09-14
refterms.dateFOA2023-01-10T11:05:12Z
dc.date.published-online2021-09-07
dc.date.published-print2021-09-14


Files in this item

Thumbnail
Name:
pnas.202022200.pdf
Size:
1.923Mb
Format:
PDF
Description:
Published Version
Thumbnail
Name:
pnas.2022200118.sapp.pdf
Size:
1.406Mb
Format:
PDF
Description:
Supplementary material

This item appears in the following Collection(s)

Show simple item record