Bridging the interfacial gap in mixed-matrix membranes by nature-inspired design: Precise molecular sieving with polymer-grafted metal–organic frameworks
Type
ArticleAuthors
Cseri, LeventeHardian, Rifan
Anan, Shizuka
Vovusha, Hakkim
Schwingenschlögl, Udo

Budd, Peter Martin
Sada, Kazuki
Kokado, Kenta
Szekely, Gyorgy

KAUST Department
Advanced Membranes and Porous Materials Research CenterChemical Engineering Program
Computational Physics and Materials Science (CPMS)
Material Science and Engineering Program
Physical Science and Engineering (PSE) Division
Date
2021Permanent link to this record
http://hdl.handle.net/10754/670922
Metadata
Show full item recordAbstract
Membrane technology is a dynamically developing field of separation science that is poised to result in new and efficient processes, energy and cost savings, and sustainability benefits. A key challenge in this field is the development of highly selective membranes, which can be addressed by the development of mixed-matrix membranes (MMMs) containing fillers such as metal–organic frameworks (MOFs). However, the lack of interfacial adhesion causes nanosized gaps between the filler and the polymer matrix. In this study, we aim to elucidate the intrinsic properties of MMMs and bridge the gap between their material constituents. A series of novel membranes comprising MOF nanoparticles with similar chemical and morphological properties but increasing pore size (UiO-66–68-NH2) were prepared. The nanoparticles’ surface was covalently grafted with poly(N-isopropylacrylamide) (PNIPAM) chains, which could then become entangled with the membranes’ polymer matrix. Morphological characterization and organic solvent nanofiltration tests revealed that membranes with PNIPAM-grafted fillers do not suffer from the formation of pinholes at the filler–matrix interface that are detrimental to the filtration performance. For the first time, the experimental results showed an excellent match with a predictive model of nanofiltration built around the premise of liquid transport through the highly ordered pores of the MOF filler.Citation
Cseri, L., Hardian, R., Anan, S., Vovusha, H., Schwingenschlogl, U., Budd, P. M., … Szekely, G. (2021). Bridging the interfacial gap in mixed-matrix membranes by nature-inspired design: Precise molecular sieving with polymer-grafted metal–organic frameworks. Journal of Materials Chemistry A. doi:10.1039/d1ta06205kSponsors
The research reported in this publication was supported by funding from The Royal Society (IES\R3\170080) and the King Abdullah University of Science and Technology (KAUST). Fig. 1 and ToC graphic were created by Xavier Pita,scientific illustrator at KAUST. LC is grateful to the Faculty of Science and Engineering for his PhD scholarship at the University of Manchester. The authors are thankful to Dr. Hai Anh Le Phuong and Dr. Kamilla Németh for the fruitful discussion.Publisher
Royal Society of ChemistryJournal
Journal of Materials Chemistry AAdditional Links
https://doi.org/10.1039/D1TA06205Kae974a485f413a2113503eed53cd6c53
10.1039/D1TA06205K
Scopus Count
Except where otherwise noted, this item's license is described as Archived with thanks to Journal of Materials Chemistry A. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence.