• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Green Solvent-additive ink formulations based on Hansen Solubility Parameters for up-scaling of organic solar cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    MSE Thesis - Guillermo Tostado.pdf
    Size:
    4.118Mb
    Format:
    PDF
    Embargo End Date:
    2024-02-09
    Download
    View more filesView fewer files
    Type
    Dissertation
    Authors
    Tostado-Blázquez, Guillermo cc
    Advisors
    Baran, Derya cc
    Committee members
    Tung, Vincent cc
    Laquai, Frédéric cc
    Program
    Material Science and Engineering
    KAUST Department
    Physical Science and Engineering (PSE) Division
    Date
    2021-07
    Embargo End Date
    2024-02-09
    Permanent link to this record
    http://hdl.handle.net/10754/670492
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2024-02-09.
    Abstract
    The upsurge of oil price and the rapid drain of its sources has driven the scientific community to prioritize the lookout for cost-effective, renewable and green technologies for energy production. Organic Solar Cells (OSC) position themselves as an attractive alternative due to their light weight, flexibility, semitransparency, low production costs, and the potential easy upscaling processability. One of the most important parameters within an OSC is the solid-state morphology of its photoactive layer, which is mainly dictated by the solvent evaporation process taking place during the deposition of the inks. A common way to manipulate the morphology is by the employment of solvent additives. Hansen Solubility Parameters (HSP) is a theory employed to predict the interactions between two materials based on dispersion interactions (δD), permanent dipolar molecular interactions (δP), and hydrogen bonding interactions (δH). A great challenge for up-scaling this technology is the usage of halogenated and toxic solvents, therefore, employing the HSP theory we selected four possible green solvent-additive systems (o-xylene as host and limonene, tetralin, veratrole and DPE as additives) and built, tested and characterized inverted architecture devices employing them as medium for (1:1) and (1:5) donor-acceptor blends via blade-coating methods. Proportional blend devices were able to reach a PCEmax value of 8,63% with 2.5% by volume of veratrole; while donor diluted blends were able to reach a PCEmax value of 6.74% with 1% by volume of limonene. Simultaneously, it was possible to observe that in proportional blend devices, employing donor-akin additives resulted in smaller FF percentages (at least by 10%) and slightly higher Voc values when compared with acceptor-akin additives; while in donor-diluted devices the opposite phenomenon took place. On another note, a direct correlation between boiling point and superficial donor material percentage was found: if the former is high, so will be the latter and vice versa. This finding seems to work the other way around for 1:1 blend. Finally, higher boiling point additives demonstrated to perform the best for donor-diluted inverted architecture systems, since high superficial donor percentages were observed.
    Citation
    Tostado-Blázquez, G. (2021). Green Solvent-additive ink formulations based on Hansen Solubility Parameters for up-scaling of organic solar cells. KAUST Research Repository. https://doi.org/10.25781/KAUST-0Y791
    DOI
    10.25781/KAUST-0Y791
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-0Y791
    Scopus Count
    Collections
    PhD Dissertations; Physical Science and Engineering (PSE) Division; Material Science and Engineering Program

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.