Dataset for multispectral illumination estimation using deep unrolling network
dc.contributor.author | Li, Yuqi | |
dc.contributor.author | Fu, Qiang | |
dc.contributor.author | Heidrich, Wolfgang | |
dc.date.accessioned | 2021-08-03T05:35:58Z | |
dc.date.available | 2021-08-03T05:35:58Z | |
dc.date.issued | 2021-08-02 | |
dc.identifier.citation | Li, Y., Fu, Q., & Heidrich, W. (2021). Dataset for multispectral illumination estimation using deep unrolling network [Data set]. KAUST Research Repository. https://doi.org/10.25781/KAUST-6930V | |
dc.identifier.doi | 10.25781/KAUST-6930V | |
dc.identifier.uri | http://hdl.handle.net/10754/670368 | |
dc.description.sponsorship | This work was supported by the KAUST baseline funding. | |
dc.publisher | KAUST Research Repository | |
dc.rights | Attribution-NonCommercial 3.0 United States | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/us/ | |
dc.subject | multispectral imaging | |
dc.subject | illumination spectra estimation | |
dc.subject | matrix factorization | |
dc.subject | ADMM | |
dc.subject | deep unrolling network | |
dc.title | Dataset for multispectral illumination estimation using deep unrolling network | |
dc.type | Dataset | |
dc.contributor.department | Visual Computing Center (VCC) | |
dc.contributor.institution | Ningbo University | |
dc.relation.issupplementto | Li, Y., Fu, Q., Heidrich, W. Multispectral illumination estimation using deep unrolling network. IEEE International Conference on Computer Vision (ICCV) 2021. | |
refterms.dateFOA | 2021-08-17T00:00:00Z | |
kaust.request.doi | yes | |
display.summary | Our dataset repository includes 409 spectral reflectance images. The images consist of various indoor and outdoor scenes acquired with a compact scanning-based hyperspectral camera: Specim IQ. The indoor scenes include clothes, papers, toys, vegetables, fruits, optical elements, etc. and the outdoor scenes include buildings, plants, vehicles, animals, etc. The captured images have a spatial resolution of 512×512 pixels and 34 spectral bands ranging from 400nm to 730nm. <br><br> Details of the database can be found in the following publication: <br><br> @article{Yuqi2021SpecSeperation, <br>title={Multispectral illumination estimation using deep unrolling network}, <br>author={Li, Yuqi and Fu, Qiang and Heidrich, Wolfgang}, <br>booktitle={2021 IEEE International Conference on Computer Vision(ICCV)}, <br>pages={1--8}, <br>year={2021}, <br>organization={IEEE} } <br><br> We capture various scenes containing a whiteboard with flat spectral reflectance and calculate the reflectance spectral images. The spectral reflectance images are stored as H5 files. <br><br> Read the H5 data file (Matlab example): <br><br> data = h5read('*.h5','/img\'); | |
display.relations | <b>Is Supplement To:</b> <br/><ul> <li><i>[Conference Paper]</i> <br/> Li, Y., Fu, Q., Heidrich, W. Multispectral illumination estimation using deep unrolling network. IEEE International Conference on Computer Vision (ICCV) 2021. Project Page: <a href="https://vccimaging.org/Publications/Yuqi2021SpecSeperation/">https://vccimaging.org/Publications/Yuqi2021SpecSeperation/</a></li></ul> |