Show simple item record

dc.contributor.authorLi, Yuqi
dc.contributor.authorFu, Qiang
dc.contributor.authorHeidrich, Wolfgang
dc.date.accessioned2021-08-03T05:35:58Z
dc.date.available2021-08-03T05:35:58Z
dc.date.issued2021-08-02
dc.identifier.citationLi, Y., Fu, Q., & Heidrich, W. (2021). Dataset for multispectral illumination estimation using deep unrolling network [Data set]. KAUST Research Repository. https://doi.org/10.25781/KAUST-6930V
dc.identifier.doi10.25781/KAUST-6930V
dc.identifier.urihttp://hdl.handle.net/10754/670368
dc.description.sponsorshipThis work was supported by the KAUST baseline funding.
dc.publisherKAUST Research Repository
dc.rightsAttribution-NonCommercial 3.0 United States
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/us/
dc.subjectmultispectral imaging
dc.subjectillumination spectra estimation
dc.subjectmatrix factorization
dc.subjectADMM
dc.subjectdeep unrolling network
dc.titleDataset for multispectral illumination estimation using deep unrolling network
dc.typeDataset
dc.contributor.departmentVisual Computing Center (VCC)
dc.contributor.institutionNingbo University
dc.relation.issupplementtoLi, Y., Fu, Q., Heidrich, W. Multispectral illumination estimation using deep unrolling network. IEEE International Conference on Computer Vision (ICCV) 2021.
refterms.dateFOA2021-08-17T00:00:00Z
kaust.request.doiyes
display.summaryOur dataset repository includes 409 spectral reflectance images. The images consist of various indoor and outdoor scenes acquired with a compact scanning-based hyperspectral camera: Specim IQ. The indoor scenes include clothes, papers, toys, vegetables, fruits, optical elements, etc. and the outdoor scenes include buildings, plants, vehicles, animals, etc. The captured images have a spatial resolution of 512×512 pixels and 34 spectral bands ranging from 400nm to 730nm. <br><br> Details of the database can be found in the following publication: <br><br> @article{Yuqi2021SpecSeperation, <br>title={Multispectral illumination estimation using deep unrolling network}, <br>author={Li, Yuqi and Fu, Qiang and Heidrich, Wolfgang}, <br>booktitle={2021 IEEE International Conference on Computer Vision(ICCV)}, <br>pages={1--8}, <br>year={2021}, <br>organization={IEEE} } <br><br> We capture various scenes containing a whiteboard with flat spectral reflectance and calculate the reflectance spectral images. The spectral reflectance images are stored as H5 files. <br><br> Read the H5 data file (Matlab example): <br><br> data = h5read('*.h5','/img\');
display.relations<b>Is Supplement To:</b> <br/><ul> <li><i>[Conference Paper]</i> <br/> Li, Y., Fu, Q., Heidrich, W. Multispectral illumination estimation using deep unrolling network. IEEE International Conference on Computer Vision (ICCV) 2021. Project Page: <a href="https://vccimaging.org/Publications/Yuqi2021SpecSeperation/">https://vccimaging.org/Publications/Yuqi2021SpecSeperation/</a></li></ul>


Files in this item

Thumbnail
Name:
KAUST_SpectralReflectanceImages_h5.zip
Size:
11.49Gb
Format:
application/zip
Description:
Spectral reflectance image data in h5 format

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial 3.0 United States
Except where otherwise noted, this item's license is described as Attribution-NonCommercial 3.0 United States