Show simple item record

dc.contributor.authorZou, Xuecui
dc.contributor.authorAhmed, Sally
dc.contributor.authorFariborzi, Hossein
dc.date.accessioned2021-07-26T11:51:27Z
dc.date.available2021-07-26T11:51:27Z
dc.date.issued2021
dc.identifier.citationZou, X., Ahmed, S., & Fariborzi, H. (2021). Implementation of A MEMS Resonator-based Digital to Frequency Converter Using Artificial Neural Networks. 2021 Design, Automation & Test in Europe Conference & Exhibition (DATE). doi:10.23919/date51398.2021.9474165
dc.identifier.isbn978-1-7281-6336-9
dc.identifier.issn1530-1591
dc.identifier.doi10.23919/DATE51398.2021.9474165
dc.identifier.urihttp://hdl.handle.net/10754/670283
dc.description.abstractThis paper proposes a novel approach for micro-electromechanical resonator-based digital to frequency converter (DFC) design using artificial neural networks (ANN). The DFC is a key building block for multiple digital and interface units. We present the design of a 4-bit DFC device which consists of an in-plane clamped-clamped micro-beam resonator and 6 partial electrodes. The digital inputs, which are DC signals applied to the corner partial electrodes, modulate the beam resonance frequency using the electrostatic softening effect. The main challenge in the design is to find the air gap size between each input electrode and the beam to achieve the desired relationship between the digital input combinations and the corresponding resonance frequencies for a given application. We use a shallow, fully-connected feedforward neural network model to estimate the airgaps corresponding to the desired resonance frequency distribution, with less than 1% error. Two special cases are discussed for two applications: equal airgaps for implementing a full adder (FA), and weight-adjusted airgaps for implementing a 4-bit digital to analog converter (DAC). The training, validation, and testing datasets are extracted from finite-element-method (FEM) simulations, by obtaining resonance frequencies for the 16 input combinations for different airgap sets. The proposed method based on ANN model paves the way for a new design paradigm for MEMS resonator-based logic and opens new routes for designing more complex digital and interface circuits.
dc.description.sponsorshipThe authors would like to thank Chenxin Xiong for her valuable insight into the machine learning models.
dc.publisherIEEE
dc.relation.urlhttps://ieeexplore.ieee.org/document/9474165/
dc.relation.urlhttps://ieeexplore.ieee.org/document/9474165/
dc.relation.urlhttps://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9474165
dc.rightsArchived with thanks to IEEE
dc.subjectDigital-to-Frequency converter
dc.subjectmicroresonators
dc.subjectnonlinear regression
dc.subjectmachine learning
dc.subjectneural networks
dc.titleImplementation of A MEMS Resonator-based Digital to Frequency Converter Using Artificial Neural Networks
dc.typeConference Paper
dc.contributor.departmentKing Abdullah University of Science and Technology (KAUST) Thuwal,Saudi Arabia
dc.contributor.departmentElectrical Engineering Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.conference.date1-5 Feb. 2021
dc.conference.name2021 Design, Automation & Test in Europe Conference & Exhibition (DATE)
dc.conference.locationGrenoble, France
dc.eprint.versionPost-print
kaust.personZou, Xuecui
kaust.personAhmed, Sally
kaust.personFariborzi, Hossein


This item appears in the following Collection(s)

Show simple item record