Show simple item record

dc.contributor.authorUpadhyaya, Lakshmeesha
dc.contributor.authorOliveira, Beatriz
dc.contributor.authorPereira, Vanessa J.
dc.contributor.authorBarreto Crespo, Maria T.
dc.contributor.authorCrespo, Joao G.
dc.contributor.authorQuemener, Damien
dc.contributor.authorSemsarilar, Mona
dc.date.accessioned2021-07-12T13:16:26Z
dc.date.available2021-07-12T13:16:26Z
dc.date.issued2020
dc.identifier.citationUpadhyaya, L., Oliveira, B., Pereira, V. J., Barreto Crespo, M. T., Crespo, J. G., Quemener, D., & Semsarilar, M. (2020). Nanocomposite membranes from nano-particles prepared by polymerization induced self-assembly and their biocidal activity. Separation and Purification Technology, 251, 117375. doi:10.1016/j.seppur.2020.117375
dc.identifier.issn1873-3794
dc.identifier.issn1383-5866
dc.identifier.doi10.1016/j.seppur.2020.117375
dc.identifier.urihttp://hdl.handle.net/10754/670155
dc.description.abstractSilver ions have been widely used because of their antimicrobial properties. This study describes the production of novel nanocomposite membranes from a block copolymer and silver nanoparticles (NPs). These composite membranes display properties from both polymeric and inorganic materials along with the biocidal features obtained due to the presence of silver ions. The spin coating technique is employed to synthesize the nanocomposite membrane consisting of positively charged inorganic NPs and negatively charged polymeric NPs. Polymeric NPs of spherical, wormicular, and vesicular morphologies were synthesized using Reversible addition-fragmentation chain transfer (RAFT) polymerization using poly(methacrylic acid)-b-(methyl methacrylate) diblock copolymer. The silver NPs coated with poly(methacrylic acid)-b-poly(quaternized 2-(dimethylamino)ethyl methacrylate), were synthesized using a nanoprecipitation method. The silver NPs act as the bridging entity between the polymeric NPs, as well as conferring the antimicrobial activity to the composite membranes. To test their antimicrobial properties, membranes were incubated with Enterococcus hirae. Comparison with the controls shows a 2 to 3 log decrease in the bacterial count for a contact time of 24 h. Furthermore, membrane filtration experiments conducted with phosphate buffer saline solutions spiked with bacteria indicated the importance of incorporating silver NPs in the nanocomposite membrane to achieve considerable rejection of bacteria as well as biocidal activity.
dc.description.sponsorshipThe doctorate of L.U. has been completed at the Institut Europeen des Membranes and carried out in three universities: ́ Université de Montpellier (France), Universidad de Zaragoza (Spain), and Universidade Nova de Lisboa (Portugal), and financed by a scholarship of the European Commission Education, Audiovisual and Culture Executive Agency (EACEA), under the program Erasmus Mundus Doctorate in Membrane Engineering, EUDIME (FPA No. 2011-0014, Edition III). D.Q. and M.S. acknowledge financial support from the “Agence Nationale pour la Recherche” (ANR-13- JS08-0008-01). Financial support from Fundação para a Ciência e a Tecnologia through the PhD fellowship SFRH/BD/111150/2015 is gratefully acknowledged. iNOVA4Health-UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement, is also gratefully acknowledged. This work was also supported by the Associate Laboratory for Green Chemistry LAQV which is financed by national funds from FCT/MCTES (UIDB/50006/2020).
dc.publisherElsevier BV
dc.relation.urlhttps://linkinghub.elsevier.com/retrieve/pii/S1383586620318499
dc.rightsNOTICE: this is the author’s version of a work that was accepted for publication in SEPARATION AND PURIFICATION TECHNOLOGY. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in SEPARATION AND PURIFICATION TECHNOLOGY, [251, , (2020)] DOI: 10.1016/j.seppur.2020.117375 . © 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectNanocomposite membranes
dc.subjectBlock copolymers
dc.subjectSilver nanoparticles
dc.subjectBiocidal activity
dc.titleNanocomposite membranes from nano-particles prepared by polymerization induced self-assembly and their biocidal activity
dc.typeArticle
dc.contributor.departmentBiological and Environmental Sciences and Engineering (BESE) Division
dc.identifier.journalSEPARATION AND PURIFICATION TECHNOLOGY
dc.identifier.wosutWOS:000564730500010
dc.eprint.versionPost-print
dc.contributor.institutionInstitut Européen des Membranes, IEM, UMR5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France
dc.contributor.institutioniBET - Instituto de Biologia Experimental e Technologica, Av Republica, Qta do Marques, 2780-157 Oeiras, Portugal
dc.contributor.institutionInstituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
dc.contributor.institutionLAQV- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
dc.identifier.volume251
dc.identifier.pages117375
kaust.personUpadhyaya, Lakshmeesha
dc.identifier.eid2-s2.0-85087885283


This item appears in the following Collection(s)

Show simple item record