Microwave -activated structured reactors to maximize propylene selectivity in the oxidative dehydrogenation of propane
Name:
1-s2.0-S1385894720307373-mmc1.docx
Size:
9.031Mb
Format:
Microsoft Word 2007
Description:
Supplementary material
Name:
1-s2.0-S1385894720307373-ga1_lrg.jpg
Size:
121.3Kb
Format:
JPEG image
Description:
Graphical abstract
Type
ArticleKAUST Department
KAUSTDate
2020-03-13Permanent link to this record
http://hdl.handle.net/10754/670151
Metadata
Show full item recordAbstract
Microwave (MW) heating has been applied to increase the selectivity to propylene in the oxidative dehydrogenation (ODH) of propane. The preferential heating of the solid monolith (made of SiC, a good microwave susceptor), allows working with a lower gas phase temperature, reducing the formation of undesired by-products in the gas phase via homogeneous reactions. Conversion levels of ~ 21% and selectivity to propylene up to 70% have been achieved with MW-heated straight channel monolithic reactors coated with a VMgO catalyst. These competitive values contrast with the more limited performance delivered by the same catalytic system when it is subjected to conventional heating in a fixed-bed reactor configuration, thereby corroborating the advantage of working under a significant gas–solid temperature gap to minimize the extent of homogeneous reactions.Citation
Ramirez, A., Hueso, J. L., Mallada, R., & Santamaria, J. (2020). Microwave-activated structured reactors to maximize propylene selectivity in the oxidative dehydrogenation of propane. Chemical Engineering Journal, 393, 124746. doi:10.1016/j.cej.2020.124746Sponsors
Financial support from the European Research Council (ERC Advanced Grant HECTOR-267626) and the Regional Government of Aragon (DGA) is gratefully acknowledged. The CIBER-BBN (initiative funded by the VI National R&D&i Plan 2008-2011, Iniciativa Ingenio 2010, Consolider Program, CIBER Actions and financed by the Instituto de Salud Carlos III with assistance from the European Regional Development Fund) is gratefully acknowledged. The synthesis of materials has been performed by the Platform of Production of Biomaterials and Nanoparticles of the NANOBIOSIS ICTS, more specifically by the Nanoparticle Synthesis Unit of the CIBER in BioEngineering, Biomaterials & Nanomedicine (CIBER-BBN).Publisher
Elsevier BVJournal
CHEMICAL ENGINEERING JOURNALAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S1385894720307373https://zaguan.unizar.es/record/99807/files/texto_completo.pdf
ae974a485f413a2113503eed53cd6c53
10.1016/j.cej.2020.124746