• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Application of distributed temperature sensing using optical fibre to understand temperature dynamics in wheat (triticum aestivum) during frost

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Stutsel, Bonny Margaret cc
    Callow, J. Nikolaus
    Flower, Ken C.
    Ben Biddulph, T.
    Issa, Nader A.
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Water Desalination and Reuse Research Center (WDRC)
    Date
    2020-03-13
    Submitted Date
    2019-01-09
    Permanent link to this record
    http://hdl.handle.net/10754/670125
    
    Metadata
    Show full item record
    Abstract
    Frost damage significantly restrains global wheat production. Frost development is well documented at the landscape scale but inadequately studied at the sub-paddock scale. Particularly at sites with flat topography, which are where frost field trials are conducted. In these trials, wheat varieties are compared for frost resistance with researchers assuming minimum air temperature (frost severity) is relatively uniform. But previous research has suggested that this assumption leads to falsely identifying frost resistance. Here, we demonstrate how fibre-optic Distributed temperature sensing DTS can be used to measure nighttime temperatures in a wheat crop, to better understand frost development in field trials. DTS uses the Raman Effect and the scattering of laser light to measure temperature continuously across a fibre-optic cable providing temperature data with high spatial and temporal resolution. We demonstrate that DTS can be used to record nighttime temperature in a frost field trial with an average accuracy of 0.105 °C across 3487 m by constructing a fibre-optic fence with eight rungs, spaced at 100 mm increments from ground level, through seven blocks of wheat with different sowing times. Our research shows that even in mild frost events, vertical temperature gradients of 0.24 °C per 100 mm develop in wheat crops, with the coldest temperatures occurring ∼100 to 200 mm below the top of the ear. We also show that cold temperature development during frost is non-uniform but spatially organised in a sowing block of two varieties (Wyalkatchem and Elmore). In a sowing block there was up to a 1.3 °C range in minimum air temperature and a 5.0 °C hr (degree hours below 0 °C) variation in cold. Whereas, across the site, there was a 0.5 °C range in minimum temperature, and a 3.7 °C hr range between sowing blocks.The larger variation in minium temperature within than between sowing blocks suggests that trial design may have a greater impact on the development of cold temperature than topographic or soil differences across flat sites. There is also a varietal impact on cold development with Wyalkatchem recording more degree hours below 0 °C than Elmore, and this is suggested as driven by morphometric differences (height, canopy density and closure).Our results provide an improved understanding of cold temperature development in field trials that will aid in the search for frost resistance. They may also help to better understand cold temperature-yield relationships so that the economic impact of frost to growers can potentially be predicted to enable effective post-event management decisions.
    Citation
    Stutsel, B. M., Callow, J. N., Flower, K. C., Biddulph, T. B., & Issa, N. A. (2020). Application of distributed temperature sensing using optical fibre to understand temperature dynamics in wheat (triticum aestivum) during frost. European Journal of Agronomy, 115, 126038. doi:10.1016/j.eja.2020.126038
    Sponsors
    This work was funded by the Grains Research and Development Corporation (GRDC), National Frost Initiative, Project CSP00198 “Spatial temperature measurement and mapping tools to assist growers, advisers and extension specialists manage frost risk at farm-scale”. The lead author was supported by an Australia Government Research Training Program (RTP) award and GRDC Grains Industry PhD Research Scholarship. The funding bodies had no input into the paper other than financial support of the research. Thanks to landowner Bill Cleland, DPIR staff and trial site managers Mike Baker and Nathan Height.Thank you, Rebecca Smith, Living Farm for support in establishing and managing the field trial site. Peter Hanson, The Weatherlogger, is acknowledged for onsite weather station data service and monitoring. The anonymous reviewers and thesis examiners whose insightful comments and suggestions led to a much-improved manuscript are also thanked for their time and contribution.
    Publisher
    Elsevier BV
    Journal
    EUROPEAN JOURNAL OF AGRONOMY
    DOI
    10.1016/j.eja.2020.126038
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S1161030120300460
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.eja.2020.126038
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Water Desalination and Reuse Research Center (WDRC)

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.