On the robustness of linear and non-linear fractional-order systems with non-linear uncertain parameters
dc.contributor.author | Ndoye, Ibrahima | |
dc.contributor.author | Darouach, Mohamed | |
dc.contributor.author | Voos, Holger | |
dc.contributor.author | Zasadzinski, Michel | |
dc.date.accessioned | 2021-07-06T14:07:39Z | |
dc.date.available | 2021-07-06T14:07:39Z | |
dc.date.issued | 2016 | |
dc.identifier.citation | N’Doye, I., Darouach, M., Voos, H., & Zasadzinski, M. (2015). On the robustness of linear and non-linear fractional-order systems with non-linear uncertain parameters. IMA Journal of Mathematical Control and Information, 33(4), 997–1014. doi:10.1093/imamci/dnv022 | |
dc.identifier.issn | 1471-6887 | |
dc.identifier.issn | 0265-0754 | |
dc.identifier.doi | 10.1093/imamci/dnv022 | |
dc.identifier.uri | http://hdl.handle.net/10754/670036 | |
dc.description.abstract | This paper presents the robust stabilization problem of linear and non-linear fractional-order systems with non-linear uncertain parameters. The uncertainty in the model appears in the form of the combination of 'additive perturbation' and 'multiplicative perturbation'. Sufficient conditions for the robust asymptotical stabilization of linear fractional-order systems are presented in terms of linear matrix inequalities (LMIs) with the fractional-order 0 < α < 1. Sufficient conditions for the robust asymptotical stabilization of non-linear fractional-order systems are then derived using a generalization of the Gronwall-Bellman approach. Finally, a numerical example is given to illustrate the effectiveness of the proposed results. | |
dc.publisher | Oxford University Press (OUP) | |
dc.relation.url | https://academic.oup.com/imamci/article-lookup/doi/10.1093/imamci/dnv022 | |
dc.rights | This is a pre-copyedited, author-produced PDF of an article accepted for publication in IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION following peer review. The version of record is available online at: https://academic.oup.com/imamci/article-lookup/doi/10.1093/imamci/dnv022. | |
dc.subject | linear and non-linear fractional-order systems | |
dc.subject | linear matrix inequality (LMI) | |
dc.subject | generalization of Gronwall-Bellman lemma | |
dc.subject | robust stabilization | |
dc.subject | parameter uncertainties | |
dc.title | On the robustness of linear and non-linear fractional-order systems with non-linear uncertain parameters | |
dc.type | Article | |
dc.contributor.department | Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division | |
dc.identifier.journal | IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION | |
dc.identifier.wosut | WOS:000393105900006 | |
dc.eprint.version | Post-print | |
dc.contributor.institution | Research Center for Automatic Control of Nancy, CRAN UMR, 7039, CNRS, University of Lorraine, IUT de Longwy, 186 rue de Lorraine, Cosnes et Romain, 54400, France | |
dc.contributor.institution | Faculty of Science, Technology and Communication (FSTC), University of Luxembourg, 6, rue Richard Coudenhove-Kalergi, Luxembourg, L-1359, Luxembourg | |
dc.identifier.volume | 33 | |
dc.identifier.issue | 4 | |
dc.identifier.pages | 997-1014 | |
kaust.person | Ndoye, Ibrahima | |
dc.identifier.eid | 2-s2.0-85014310930 |
This item appears in the following Collection(s)
-
Articles
-
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/