Show simple item record

dc.contributor.authorSouza, A. M.
dc.contributor.authorRungger, I.
dc.contributor.authorSchwingenschlögl, Udo
dc.contributor.authorSanvito, S.
dc.date.accessioned2021-07-05T12:41:18Z
dc.date.available2021-07-05T12:41:18Z
dc.date.issued2015-10-20
dc.date.submitted2015-06-25
dc.identifier.citationSouza, A. M., Rungger, I., Schwingenschlögl, U., & Sanvito, S. (2015). The image charge effect and vibron-assisted processes in Coulomb blockade transport: a first principles approach. Nanoscale, 7(45), 19231–19240. doi:10.1039/c5nr04245c
dc.identifier.issn2040-3372
dc.identifier.issn2040-3364
dc.identifier.doi10.1039/c5nr04245c
dc.identifier.urihttp://hdl.handle.net/10754/670021
dc.description.abstractWe present a combination of density functional theory and of both non-equilibrium Green's function formalism and a Master equation approach to accurately describe quantum transport in molecular junctions in the Coulomb blockade regime. We apply this effective first-principles approach to reproduce the experimental results of Perrin et al., [Nat. Nanotechnol., 2013, 8, 282] for the transport properties of a Au–(Zn)porphyrin–Au molecular junction. We demonstrate that energy level renormalization due to the image charge effect is crucial to the prediction of the current onset in the current–voltage, I–V, curves as a function of electrode separation. Furthermore, we show that for voltages beyond that setting the current onset, the slope of the I–V characteristics is determined by the interaction of the charge carriers with molecular vibrations. This corresponds to current-induced local heating, which may also lead to an effective reduced electronic coupling. Overall our scheme provides a fully ab initio description of quantum transport in the Coulomb blockade regime in the presence of electron–vibron coupling.
dc.description.sponsorshipThe authors are thankful to the King Abdullah University of Science and Technology (Kingdom of Saudi Arabia) for the financial support through the ACRAB project, to the Trinity College High-Performance Computer Center (TCHPC) and the Ireland’s High-Performance computing centre (ICHEC) for computational resources. Additional support was provided by the European Research Council (Quest and HINTS projects).
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.urlhttp://xlink.rsc.org/?DOI=C5NR04245C
dc.rightsArchived with thanks to NANOSCALE
dc.titleThe image charge effect and vibron-assisted processes in Coulomb blockade transport: a first principles approach
dc.typeArticle
dc.contributor.departmentComputational Physics and Materials Science (CPMS)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalNANOSCALE
dc.identifier.wosutWOS:000364852500050
dc.eprint.versionPost-print
dc.contributor.institutionSchool of Physics
dc.contributor.institutionCRANN and AMBER
dc.contributor.institutionTrinity College
dc.contributor.institutionDublin 2, Ireland
dc.contributor.institutionPSE Division
dc.identifier.volume7
dc.identifier.issue45
dc.identifier.pages19231-19240
kaust.personSchwingenschlögl, Udo
kaust.personSchwingenschlögl, Udo
dc.date.accepted2015-10-16
dc.identifier.eid2-s2.0-84947233832


This item appears in the following Collection(s)

Show simple item record