Characterization of a Red Multimode Vertical-Cavity Surface-Emitting Laser for Intrinsic Parameters
Name:
JULY 4 Master's Thesis Jonathan Wagstaff Final.pdf
Size:
10.12Mb
Format:
PDF
Description:
Final Thesis
Type
ThesisAuthors
Wagstaff, Jonathan
Advisors
Ooi, Boon S.
Committee members
Salama, Khaled N.
Schwingenschlögl, Udo

Ng, Tien Khee

Date
2021-07Permanent link to this record
http://hdl.handle.net/10754/669964
Metadata
Show full item recordAbstract
Compared to single-mode VCSELs, multimode VCSELs have not received much attention in models and characterizations for functional parameters, despite making up the majority of commercially available VCSELs [1]. In particular, the extraction of the linewidth enhancement factor for multimode VCSELs has been overlooked, likely due to difficulties in measurement. Additionally, multimode models for VCSELs have, until recently, omitted spectral characteristics such as linewidth [2]. This is the first work to report a measured linewidth enhancement factor value (lower bound) for a multimode VCSEL. A characterization for the functional parameters of a red multimode vertical-cavity surface-emitting laser (VCSEL) is shown herein. The extracted values form a complete working set of parameters for the laser rate equations. The techniques employed for extracting values include frequency responses, power versus current fittings, and optical spectral measurements. From the frequency responses at various bias currents, the relaxation oscillation frequency and damping factor are found. The power versus current curve is fitted to find parameters including the modal spontaneous emission rate and carrier density at threshold. The spectral measurements are used for evaluating the linewidth enhancement factor (LEF) also known as the alpha factor or Henry factor. These 5 methods have been applied previously to characterizing single-mode VCSELs [3]–[5]. The experimentally extracted parameters herein are important for creating accurate models and simulations for multimode VCSELs. Improved multimode VCSEL models are necessary for improving optical communication, especially for short-range optical interconnects [2]. The measured parameters for the characterized VCSEL are comparable to similar single-mode VCSELs characterized in other works. This is promising because multi-mode VCSELs have higher output power than their single-mode counterparts, thus these results may aid in improving short-range optical interconnects.Citation
Wagstaff, J. M. (2021). Characterization of a Red Multimode Vertical-Cavity Surface-Emitting Laser for Intrinsic Parameters. KAUST Research Repository. https://doi.org/10.25781/KAUST-8P5BPae974a485f413a2113503eed53cd6c53
10.25781/KAUST-8P5BP