Show simple item record

dc.contributor.authorCampuzano, Felipe
dc.contributor.authorCardona-Uribe, Natalia
dc.contributor.authorAgudelo, Andrés F.
dc.contributor.authorSarathy, Mani
dc.contributor.authorMartínez, Juan Daniel
dc.date.accessioned2021-06-10T13:49:00Z
dc.date.available2021-06-10T13:49:00Z
dc.date.issued2021-05-11
dc.date.submitted2021-03-25
dc.identifier.citationCampuzano, F., Cardona-Uribe, N., Agudelo, A. F., Sarathy, S. M., & Martínez, J. D. (2021). Pyrolysis of Waste Tires in a Twin-Auger Reactor Using CaO: Assessing the Physicochemical Properties of the Derived Products. Energy & Fuels. doi:10.1021/acs.energyfuels.1c00890
dc.identifier.issn0887-0624
dc.identifier.issn1520-5029
dc.identifier.doi10.1021/acs.energyfuels.1c00890
dc.identifier.urihttp://hdl.handle.net/10754/669523
dc.description.abstractThis work assesses the effect of adding CaO during the pyrolysis of waste tires (WT) using a twin-auger reactor on the properties of the pyrolysis derived products. Pyrolysis was conducted in a lab-scale facility at a reactor temperature of 475 °C, solid residence time of 3.5 min, WT mass flow rate of 1.16 kg/h, and N2 flow rate of 300 mL/min. CaO was continuously fed at ratios of 10, 15, and 20 wt %, according to the WT mass flow rate, using two particle size ranges: fine (105-149 μm) and coarse (149-841 μm). The resulting tire pyrolysis oil (TPO) was initially characterized in terms of sulfur content, and the sample with the lowest sulfur content, named TPO[CaO], was further studied by different analytical techniques, including GC-MS and 1H NMR. The tire pyrolysis gas (TPG) and the tire pyrolysis solid (TPS) related to TPO[CaO], so-called TPG[CaO] and TPS[CaO], respectively, were also characterized by gas chromatography, and elemental, proximate, and XRF analyses, respectively. Lastly, an acid demineralization process was carried out to remove some of the inorganic elements in the TPS[CaO]. The addition of 15 wt % of coarse CaO during the pyrolysis of WT resulted in a sulfur reduction in TPO of 26.10%, while viscosity and water content were significantly reduced. The GC-MS analysis revealed a significant presence of benzene, toluene, xylene, and limonene in both TPO and TPO[CaO]. Likewise, 1H NMR suggested an increase of hydrogen atoms in aromatic, naphthenic, and olefin structures in the TPO[CaO], and a decrease of these atoms in paraffinic structures. Similarly, H2 and some CxHy compounds increased, while CO2, CO, and H2S decreased in TPG[CaO], which supports the hypothesis of the participation of CaO in several reactions during the pyrolysis of WT. Although the ash content in TPS[CaO] was significantly high after pyrolysis (57.5 wt %), the acid demineralization process was effective at removing 80% of its inorganic content, improving its surface area and porosity. The information presented in this work aims at providing some insights toward the advancement of in situ upgrading strategies for the resulting products derived from pyrolysis of WT.
dc.description.sponsorshipThe authors would like to express their gratitude to COLCIENCIAS for the financial support given by the research project (1210-715-51742). F.C. also acknowledges COLCIENCIAS for the Ph.D. scholarship (757-2016). F.C. expresses gratitude to the Clean Combustion Research Center at King Abdullah University of Science and Technology for the research internship. Some of the measurements presented herein were performed in the KAUST Core Laboratories with assistance from Wen Zhang, Abdul-Hamid Emwas, and Eman Barradah. The authors are also deeply grateful to Cindy N. Arenas for her valuable support with the characterization of some samples
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acs.energyfuels.1c00890
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in Energy & Fuels, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c00890.
dc.titlePyrolysis of Waste Tires in a Twin-Auger Reactor Using CaO: Assessing the Physicochemical Properties of the Derived Products
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center (CCRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Jeddah, 23955-6900, Kingdom of Saudi Arabia
dc.contributor.departmentChemical Engineering Program
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalEnergy & Fuels
dc.rights.embargodate2022-05-11
dc.eprint.versionPost-print
dc.contributor.institutionGrupo de Investigaciones Ambientales (GIA), Universidad Pontificia Bolivariana (UPB), Circular 1ra No. 74-50, Medellín, 050031, Colombia
dc.contributor.institutionDepartment of Mechanical Engineering, Universidad de Antioquia (UdeA), Calle 67 No. 53-108, Medellín, 050010, Colombia
kaust.personCampuzano, Felipe
kaust.personSarathy, Mani
dc.date.accepted2021-04-29
dc.identifier.eid2-s2.0-85106493811
kaust.acknowledged.supportUnitClean Combustion Research Center
kaust.acknowledged.supportUnitKAUST Core Laboratories


This item appears in the following Collection(s)

Show simple item record