• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Pyrolysis of Waste Tires in a Twin-Auger Reactor Using CaO: Assessing the Physicochemical Properties of the Derived Products

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Manuscript_Campuzano et al. (2021) Clean Version.pdf
    Size:
    1.566Mb
    Format:
    PDF
    Description:
    Accepted Manuscript
    Download
    Type
    Article
    Authors
    Campuzano, Felipe cc
    Cardona-Uribe, Natalia
    Agudelo, Andrés F.
    Sarathy, Mani cc
    Martínez, Juan Daniel cc
    KAUST Department
    Chemical Engineering Program
    Clean Combustion Research Center
    Combustion and Pyrolysis Chemistry (CPC) Group
    Physical Science and Engineering (PSE) Division
    Date
    2021-05-11
    Embargo End Date
    2022-05-11
    Submitted Date
    2021-03-25
    Permanent link to this record
    http://hdl.handle.net/10754/669523
    
    Metadata
    Show full item record
    Abstract
    This work assesses the effect of adding CaO during the pyrolysis of waste tires (WT) using a twin-auger reactor on the properties of the pyrolysis derived products. Pyrolysis was conducted in a lab-scale facility at a reactor temperature of 475 °C, solid residence time of 3.5 min, WT mass flow rate of 1.16 kg/h, and N2 flow rate of 300 mL/min. CaO was continuously fed at ratios of 10, 15, and 20 wt %, according to the WT mass flow rate, using two particle size ranges: fine (105-149 μm) and coarse (149-841 μm). The resulting tire pyrolysis oil (TPO) was initially characterized in terms of sulfur content, and the sample with the lowest sulfur content, named TPO[CaO], was further studied by different analytical techniques, including GC-MS and 1H NMR. The tire pyrolysis gas (TPG) and the tire pyrolysis solid (TPS) related to TPO[CaO], so-called TPG[CaO] and TPS[CaO], respectively, were also characterized by gas chromatography, and elemental, proximate, and XRF analyses, respectively. Lastly, an acid demineralization process was carried out to remove some of the inorganic elements in the TPS[CaO]. The addition of 15 wt % of coarse CaO during the pyrolysis of WT resulted in a sulfur reduction in TPO of 26.10%, while viscosity and water content were significantly reduced. The GC-MS analysis revealed a significant presence of benzene, toluene, xylene, and limonene in both TPO and TPO[CaO]. Likewise, 1H NMR suggested an increase of hydrogen atoms in aromatic, naphthenic, and olefin structures in the TPO[CaO], and a decrease of these atoms in paraffinic structures. Similarly, H2 and some CxHy compounds increased, while CO2, CO, and H2S decreased in TPG[CaO], which supports the hypothesis of the participation of CaO in several reactions during the pyrolysis of WT. Although the ash content in TPS[CaO] was significantly high after pyrolysis (57.5 wt %), the acid demineralization process was effective at removing 80% of its inorganic content, improving its surface area and porosity. The information presented in this work aims at providing some insights toward the advancement of in situ upgrading strategies for the resulting products derived from pyrolysis of WT.
    Citation
    Campuzano, F., Cardona-Uribe, N., Agudelo, A. F., Sarathy, S. M., & Martínez, J. D. (2021). Pyrolysis of Waste Tires in a Twin-Auger Reactor Using CaO: Assessing the Physicochemical Properties of the Derived Products. Energy & Fuels. doi:10.1021/acs.energyfuels.1c00890
    Sponsors
    The authors would like to express their gratitude to COLCIENCIAS for the financial support given by the research project (1210-715-51742). F.C. also acknowledges COLCIENCIAS for the Ph.D. scholarship (757-2016). F.C. expresses gratitude to the Clean Combustion Research Center at King Abdullah University of Science and Technology for the research internship. Some of the measurements presented herein were performed in the KAUST Core Laboratories with assistance from Wen Zhang, Abdul-Hamid Emwas, and Eman Barradah. The authors are also deeply grateful to Cindy N. Arenas for her valuable support with the characterization of some samples
    Publisher
    American Chemical Society (ACS)
    Journal
    Energy & Fuels
    DOI
    10.1021/acs.energyfuels.1c00890
    Additional Links
    https://pubs.acs.org/doi/10.1021/acs.energyfuels.1c00890
    ae974a485f413a2113503eed53cd6c53
    10.1021/acs.energyfuels.1c00890
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Chemical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.