Show simple item record

dc.contributor.authorMarina, Sara
dc.contributor.authorScaccabarozzi, Alberto D.
dc.contributor.authorGutierrez-Fernandez, Edgar
dc.contributor.authorSolano, Eduardo
dc.contributor.authorKhirbat, Aditi
dc.contributor.authorCiammaruchi, Laura
dc.contributor.authorIturrospe, Amaia
dc.contributor.authorBalzer, Alex
dc.contributor.authorYu, Liyang
dc.contributor.authorGabirondo, Elena
dc.contributor.authorMonnier, Xavier
dc.contributor.authorSardon, Haritz
dc.contributor.authorAnthopoulos, Thomas D.
dc.contributor.authorCaironi, Mario
dc.contributor.authorCampoy-Quiles, Mariano
dc.contributor.authorMüller, Christian
dc.contributor.authorCangialosi, Daniele
dc.contributor.authorStingelin, Natalie
dc.contributor.authorMartin, Jaime
dc.date.accessioned2021-06-10T11:32:36Z
dc.date.available2021-06-10T11:32:36Z
dc.date.issued2021-05-13
dc.date.submitted2021-04-21
dc.identifier.citationMarina, S., Scaccabarozzi, A. D., Gutierrez-Fernandez, E., Solano, E., Khirbat, A., Ciammaruchi, L., … Martin, J. (2021). Polymorphism in Non-Fullerene Acceptors Based on Indacenodithienothiophene. Advanced Functional Materials, 2103784. doi:10.1002/adfm.202103784
dc.identifier.issn1616-301X
dc.identifier.issn1616-3028
dc.identifier.doi10.1002/adfm.202103784
dc.identifier.urihttp://hdl.handle.net/10754/669509
dc.description.abstractOrganic solar cells incorporating non-fullerene acceptors (NFAs) have reached remarkable power conversion efficiencies of over 18%. Unlike fullerene derivatives, NFAs tend to crystallize from solutions, resulting in bulk heterojunctions that include a crystalline acceptor phase. This must be considered in any morphology-function models. Here, it is confirmed that high-performing solution-processed indacenodithienothiophene-based NFAs, i.e., ITIC and its derivatives ITIC-M, ITIC-2F, and ITIC-Th, exhibit at least two crystalline forms. In addition to highly ordered polymorphs that form at high temperatures, NFAs arrange into a low-temperature metastable phase that is readily promoted via solution processing and leads to the highest device efficiencies. Intriguingly, the low-temperature forms seem to feature a continuous network that favors charge transport despite of a poorly order along the π–π stacking direction. As the optical absorption of the structurally more disordered low-temperature phase can surpass that of the more ordered polymorphs while displaying comparable—or even higher—charge transport properties, it is argued that such a packing structure is an important feature for reaching highest device efficiencies, thus, providing guidelines for future materials design and crystal engineering activities.
dc.description.sponsorshipThis work was supported by the Ministerio de Ciencia e Innovacion/FEDER (under Ref. PGC2018-094620-A-I00 and PGC2018-095411-B-I00, CEX2019-000917-S, and PGC2018-095411-B-100) and the Basque Country Government (Ref. PIBA19-0051). S.M. is grateful to POLYMAT for the doctoral scholarship. The authors thank A. Arbe, A. Alonso-Mateo, and L. Hueso for their support and access to characterization tools. The authors also thank the technical and human support provided by SGIker of UPV/EHU and European funding (ERDF and ESF). GIWAXS experiments were performed at BL11 NCD-SWEET beamline at ALBA Synchrotron (Spain) with the collaboration of ALBA staff. J.M and E.F.-G. acknowledge support through the European Union's Horizon 2020 research and innovation program, H2020-FETOPEN 01-2018-2020 (FET-Open Challenging Current Thinking), “LION-HEARTED,” Grant Agreement No. 828984. J.M and N.S. would like to thank the financial support provided by the IONBIKE RISE project, which received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 823989. N.S., A.K., and A.B. furthermore are grateful to the U.S. National Science Foundation (NSF) for support via Project No. 1905901 within NSF's Division of Materials Research. A.S. and M.C. acknowledge financial support by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program “HEROIC,” Grant Agreement No. 638059. This work was partially carried out at Polifab, the micro- and nanotechnology center of the Politecnico di Milano. C.M. thanks the Knut and Alice Wallenberg Foundation for funding through the project “Mastering Morphology for Solution-borne Electronics.” A.I. thanks MICINN for a Personal Técnico de Apoyo contract (PTA2017-14359-I) and gratefully acknowledge the financial support of the Basque Government (Research Groups IT-1175-19) and the MICINN (PGC2018-094548-B-I00, MCIU/AEI/FEDER, UE.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/10.1002/adfm.202103784
dc.rightsArchived with thanks to Advanced Functional Materials
dc.titlePolymorphism in Non-Fullerene Acceptors Based on Indacenodithienothiophene
dc.typeArticle
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalAdvanced Functional Materials
dc.rights.embargodate2022-05-13
dc.eprint.versionPost-print
dc.contributor.institutionPOLYMAT University of the Basque Country UPV/EHU Av. de Tolosa 72 San Sebastián 20018 Spain
dc.contributor.institutionCenter for Nano Science and Technology@PoliMi Istituto Italiano di Tecnologia via Giovanni Pascoli 70/3 Milan 20133 Italy
dc.contributor.institutionALBA Synchrotron Light Source NCD-SWEET Beamline Cerdanyola del Vallès 08290 Spain
dc.contributor.institutionSchool of Materials Science and Engineering and School of Chemical & Biomolecular Engineering Georgia Institute of Technology 311 Ferst Drive Atlanta GA 30332 USA
dc.contributor.institutionInstituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) Campus UAB Bellaterra 08193 Spain
dc.contributor.institutionCentro de Física de Materiales (CFM) (CSIC−UPV/EHU) Materials Physics Center (MPC) Paseo Manuel de Lardizabal 5 San Sebastián 20018 Spain
dc.contributor.institutionDepartment of Chemistry and Chemical Engineering Chalmers University of Technology Göteborg 41296 Sweden
dc.contributor.institutionDonostia International Physics Center (DIPC) Paseo Manuel de Lardizabal 4 San Sebastián 20018 Spain
dc.contributor.institutionCentro de Fisica de Materiales (CSIC-UPV/EHU) Paseo Manuel de Lardizabal 5 San Sebastián 20018 Spain
dc.contributor.institutionLaboratoire de Chimie des Polymères Organiques–LCPO UMR5629 Universitéde Bordeaux Allée Geoffroy Saint Hilaire Bâtiment B8 CS50023 Pessac Cedex 33615 France
dc.contributor.institutionUniversidade da Coruña Grupo de Polímeros Departamento de Física e Ciencias da Terra Centro de Investigacións Tecnolóxicas (CIT) Esteiro Ferrol 15471 Spain
dc.contributor.institutionIkerbasque Basque Foundation for Science Bilbao 48013 Spain
dc.identifier.pages2103784
kaust.personScaccabarozzi, Alberto Davide
kaust.personAnthopoulos, Thomas D.
dc.date.accepted2021-05-13
dc.identifier.eid2-s2.0-85105681459
refterms.dateFOA2021-06-16T05:30:35Z
dc.date.published-online2021-05-13
dc.date.published-print2021-07


Files in this item

Thumbnail
Name:
Marina_ITIC_manuscript_repository.pdf
Size:
2.305Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record