• Login
    View Item 
    •   Home
    • Events
    • KAUST Workshop: Shaping the future with Composite Materials
    • View Item
    •   Home
    • Events
    • KAUST Workshop: Shaping the future with Composite Materials
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Improving Dielectric And Magnetic Properties Of (Cr, Fe, Ni)-Doped Sic Microwaves Absorbents: A Dft Study

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Poster
    Authors
    Merabet, Boualem
    Date
    2021-05-24
    Permanent link to this record
    http://hdl.handle.net/10754/669385
    
    Metadata
    Show full item record
    Abstract
    In wireless telecoms, EM waves absorbers become important if applied outside special fields like rooms, radar systems, and military application. Composite materials allow convenient use on surfaces, good control over mechanical properties, variation of EM properties with proper selection of matrix material and different inclusions. Wide frequency range, zero external magnetic field, thin absorption layer (required for absorbers) limit FM materials for microwave frequency range. In absorber composites, and FM inclusions reduce impedance mismatches at front interface of absorbers and increase absorption of EM waves (V. B. Bregar, IEEE Transactions on Magnetics (2004) 40, 3). Cr4+ transition metal ions provide a rich set of optically active defect spins in wide bandgap semiconductors, and produce in SiC a spin-1 ground state with a narrow, spectrally isolated, spin-selective, near-telecom optical interface (B. Diler, npj Quantum Inf (2020) 6, 11). Cr4+ are detected by placing the device into a photonic cavity to reduce the excited state lifetime by Purcell enhancement: large fraction of indistinguishable photons in near telecom ZPL would be further enhanced (A. M. Dibos et al., Phys. Rev. Lett. (2018) 120, 243601). A metallic character shown by (Ni, Cr)-codoped 4H–SiC, and a FM order mainly due to Cr impurities, originating from a strong FM coupling due to p-d hybridization interaction, allow us using our alloys in microwave circuits as absorbers. 4H-SiC (P63mc hexagonal structure of a =b =3.081 Å, c = 10.096 Å (B. Song, et al., J. Am. Chem. Soc. 131 (2009) 1376–1377)). To avoid EM pollution caused by electronic and telecom systems, Cr-doped 4H–SiC are used. Cr behaves as donor or acceptor and the dielectric properties of SiC can be changed through n- or p-type doping in the microwave range, where enhanced dielectric loss and improved EM matching are beneficial to get excellent microwave absorption performancee.(Justo JF, MachadoWVM, Assali LVC. Physica B 2006;378:376).
    Conference/Event name
    KAUST Workshop: Shaping the future with Composite Materials
    Additional Links
    https://epostersonline.com//futurecomp2021/node/17
    Collections
    KAUST Workshop: Shaping the future with Composite Materials; Posters

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.