Show simple item record

dc.contributor.authorOuakad, Hassen
dc.contributor.authorAlcheikh, Nouha
dc.contributor.authorBen Mbarek, Sofiane
dc.contributor.authorRocha, Rodrigo Tumolin
dc.contributor.authorYounis, Mohammad I.
dc.date.accessioned2021-06-03T08:22:03Z
dc.date.available2021-06-03T08:22:03Z
dc.date.issued2021-06-02
dc.date.submitted2020-12-24
dc.identifier.citationOuakad, H., Alcheikh, N., Ben Mbarek, S., Rocha, R., & Younis, M. (2021). Statics and Dynamics of V-shaped Micro-beams Under Axial Forces. Journal of Computational and Nonlinear Dynamics. doi:10.1115/1.4051335
dc.identifier.issn1555-1415
dc.identifier.issn1555-1423
dc.identifier.doi10.1115/1.4051335
dc.identifier.urihttp://hdl.handle.net/10754/669362
dc.description.abstractAbstract We present an investigation into the static and dynamic behaviors of electrostatically actuated in-plane micro-electro-mechanical V-shaped micro-beam under axial loads. The micro-beams are actuated with two separate electrodes of uniform air-gap across their length. The effects of the initial rise and DC bias voltage are examined while varying the axial loads ranging from compressive to tensile. The numerical analysis is based on a nonlinear equation of motion of a shallow V-shaped micro-beam. The static equation is solved using a reduced-order model based on the Galerkin procedure. Then, the eigenvalue problem of the structure is solved for various equilibrium positions. The analytical model is validated by comparing to an experimental case study. The results show rich and diverse static and dynamic behavior. It is shown that the micro-beam may exhibit only pull-in or snap-through and pull-in instabilities. Various multi-state and hysterics behaviors are demonstrated when varying the actuation forces and the initial rise. High tunability is demonstrated when varying the axial and DC loads for the first two symmetric vibration modes. Such rich behavior can be very useful for high performance micro-scale applications designs.
dc.description.sponsorshipThis research has been supported through King Abdullah University of Science and Technology (KAUST) fund.
dc.publisherASME International
dc.relation.urlhttps://asmedigitalcollection.asme.org/computationalnonlinear/article/doi/10.1115/1.4051335/1109882/Statics-and-Dynamics-of-V-shaped-Micro-beams-Under
dc.rightsArchived with thanks to Journal of Computational and Nonlinear Dynamics
dc.titleStatics and Dynamics of V-shaped Micro-beams Under Axial Forces
dc.typeArticle
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentMechanical Engineering Program
dc.identifier.journalJournal of Computational and Nonlinear Dynamics
dc.eprint.versionPost-print
dc.contributor.institutionMechanical and Industrial Engineering Department, College of Engineering, Sultan Qaboos University, PO-BOX 33, Al-Khoudh, 123, Muscat, OMAN
kaust.personAlcheikh, Nouha
kaust.personBen Mbarek, Sofiane
kaust.personRocha, Rodrigo Tumolin
kaust.personYounis, Mohammad I.
dc.date.accepted2021-05-27
refterms.dateFOA2021-06-03T08:23:46Z


Files in this item

Thumbnail
Name:
cnd-20-1473.pdf
Size:
2.977Mb
Format:
PDF
Description:
Accepted manuscript

This item appears in the following Collection(s)

Show simple item record