• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    On Unbiased Score Estimation for Partially Observed Diffusions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    1.537Mb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Heng, Jeremy
    Houssineau, Jeremie
    Jasra, Ajay cc
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2021-05-11
    Permanent link to this record
    http://hdl.handle.net/10754/669314
    
    Metadata
    Show full item record
    Abstract
    We consider the problem of statistical inference for a class of partially-observed diffusion processes, with discretely-observed data and finite-dimensional parameters. We construct unbiased estimators of the score function, i.e. the gradient of the log-likelihood function with respect to parameters, with no time-discretization bias. These estimators can be straightforwardly employed within stochastic gradient methods to perform maximum likelihood estimation or Bayesian inference. As our proposed methodology only requires access to a time-discretization scheme such as the Euler-Maruyama method, it is applicable to a wide class of diffusion processes and observation models. Our approach is based on a representation of the score as a smoothing expectation using Girsanov theorem, and a novel adaptation of the randomization schemes developed in Mcleish [2011], Rhee and Glynn [2015], Jacob et al. [2020a]. This allows one to remove the time-discretization bias and burn-in bias when computing smoothing expectations using the conditional particle filter of Andrieu et al. [2010]. Central to our approach is the development of new couplings of multiple conditional particle filters. We prove under assumptions that our estimators are unbiased and have finite variance. The methodology is illustrated on several challenging applications from population ecology and neuroscience.
    Sponsors
    Ajay Jasra was supported by KAUST baseline funding. Jeremy Heng was funded by CY Initiative of Excellence (grant “Investissements d’Avenir” ANR-16-IDEX-0008).
    Publisher
    arXiv
    arXiv
    2105.04912
    Additional Links
    https://arxiv.org/pdf/2105.04912.pdf
    Collections
    Preprints; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.