A Microneedles Balloon Catheter for Endovascular Drug Delivery
dc.contributor.author | Moussi, Khalil | |
dc.contributor.author | Haneef, Ali A. | |
dc.contributor.author | Alsiary, Rawiah A. | |
dc.contributor.author | Diallo, Elhadj | |
dc.contributor.author | Boone, Marijn Antoine | |
dc.contributor.author | Abu-Araki, Huda | |
dc.contributor.author | Al-Radi, Osman O. | |
dc.contributor.author | Kosel, Jürgen | |
dc.date.accessioned | 2021-05-30T11:40:22Z | |
dc.date.available | 2021-05-30T11:40:22Z | |
dc.date.issued | 2021-05-28 | |
dc.date.submitted | 2021-01-12 | |
dc.identifier.citation | Moussi, K., Haneef, A. A., Alsiary, R. A., Diallo, E. M., Boone, M. A., Abu-Araki, H., … Kosel, J. (2021). A Microneedles Balloon Catheter for Endovascular Drug Delivery. Advanced Materials Technologies, 2100037. doi:10.1002/admt.202100037 | |
dc.identifier.issn | 2365-709X | |
dc.identifier.issn | 2365-709X | |
dc.identifier.doi | 10.1002/admt.202100037 | |
dc.identifier.doi | 10.1002/admt.202170046 | |
dc.identifier.uri | http://hdl.handle.net/10754/669290 | |
dc.description.abstract | Disorders of the inner parts of blood vessels have been significant triggers of cardiovascular diseases (CVDs). Different interventional methods have been employed, from complex surgeries to balloon angioplasty techniques to open the narrowed blood vessels. However, CVDs continue to be the lead cause of death in the world. Delivering a therapeutic agent directly to the inner wall of affected blood vessels can be a transformative step toward a better treatment option. To open the door for such an approach, a catheter delivery system is developed based on a conventional balloon catheter where a fluidic channel and microneedles (MNs) are integrated on top of it. This enables precise and localized delivery of therapeutics directly into vessel walls. Customizable MNs are fabricated using a high-resolution 3D printing technique where MN's height ranges from 100 to 350 µm. The MNs penetration into a synthetic vascular model is investigated with a computerized tomography scan. Ex vivo tests on rabbit aorta confirm the MN-upgraded balloon catheter's performance on real tissue. Delivery of fluorescent dye is accomplished by injecting it through the fluidic channel and MNs into the aortic tissue. The dye is observed at up to 180 µm of depth, confirming site-specific endovascular delivery. | |
dc.description.sponsorship | This work was funded and supported by King Abdullah University of Science and Technology (KAUST). The authors thank Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC) at KAUST for the assistance with the CT scanner imaging. The authors thank Mr. Tariq Ali Alghamdi (KAIMRC) and Samer Yahya Zakari (KAIMRC) for their help in tissue sectioning and staining. The authors thank Dr. Shahida Shafi and Dr. Abdelhamid Saoudi for their support. | |
dc.publisher | Wiley | |
dc.relation.url | https://onlinelibrary.wiley.com/doi/10.1002/admt.202100037 | |
dc.rights | This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.title | A Microneedles Balloon Catheter for Endovascular Drug Delivery | |
dc.type | Article | |
dc.contributor.department | Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC) | |
dc.contributor.department | Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division | |
dc.contributor.department | Electrical and Computer Engineering Program | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.contributor.department | Sensing, Magnetism and Microsystems Lab | |
dc.identifier.journal | Advanced Materials Technologies | |
dc.eprint.version | Publisher's Version/PDF | |
dc.contributor.institution | King Faisal Cardiac Center (KFCC) Jeddah 22384 Saudi Arabia | |
dc.contributor.institution | King Abdullah International Medical Research Center (KAIMRC) Jeddah 22384 Saudi Arabia | |
dc.contributor.institution | King Saud bin Abdulaziz University for Health Sciences (KSAU-HS) Jeddah Saudi Arabia | |
dc.contributor.institution | TESCAN XRE Bollebergen Ghent 9052 Belgium | |
dc.contributor.institution | Laboratory Animals Unit King Fahd Medical Research Center King Abdulaziz University Jeddah 22252 Saudi Arabia | |
dc.contributor.institution | Cardiac Surgery Division Department of Surgery King Abdulaziz University Jeddah 21589 Saudi Arabia | |
dc.contributor.institution | Department of Cardiothoracic Surgery King Faisal Specialist Hospital and Research Centre Jeddah 23431 Saudi Arabia | |
dc.contributor.institution | Sensor Systems Division (SeS) Silicon Austria Labs (SAL) Villach 9524 Austria | |
dc.identifier.pages | 2100037 | |
kaust.person | Moussi, Khalil | |
kaust.person | Diallo, Elhadj | |
kaust.person | Kosel, Jürgen | |
dc.date.accepted | 2021-05-03 | |
refterms.dateFOA | 2021-05-30T11:41:22Z | |
kaust.acknowledged.supportUnit | Ali I. Al-Naimi Petroleum Engineering Research Center | |
dc.date.published-online | 2021-05-28 | |
dc.date.published-print | 2021-08 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Ali I. Al-Naimi Petroleum Engineering Research Center (ANPERC)
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/ -
Electrical and Computer Engineering Program
For more information visit: https://cemse.kaust.edu.sa/ece -
Sensing, Magnetism and Microsystems Lab
For more information visit: https://smm.kaust.edu.sa/Pages/Home.aspx -
Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
For more information visit: https://cemse.kaust.edu.sa/