Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations: A High-Productivity Approach with PaRSEC
Name:
tpds-submission.pdf
Size:
2.687Mb
Format:
PDF
Description:
Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations: A High-Productivity Approach with PaRSEC
Type
Technical ReportAuthors
Abdulah, SamehCao, Qinglei
Pei, Yu
Bosilca, George
Dongarra, Jack
Genton, Marc G.

Keyes, David E.

Ltaief, Hatem

Sun, Ying

Date
2021-05-06Permanent link to this record
http://hdl.handle.net/10754/669126
Metadata
Show full item recordAbstract
Geostatistical modeling, one of the prime motivating applications for exascale computing, is a technique for predicting desired quantities from geographically distributed data, based on statistical models and optimization of parameters. Spatial data is assumed to possess properties of stationarity or non-stationarity via a kernel fitted to a covariance matrix. A primary workhorse of stationary spatial statistics is Gaussian maximum log-likelihood estimation (MLE), whose central data structure is a dense, symmetric positive definite covariance matrix of dimension of the number of correlated observations. Two essential operations in MLE are the application of the inverse and evaluation of the determinant of the covariance matrix. These can be rendered through the Cholesky decomposition and triangular solution. In this contribution, we reduce the precision of weakly correlated locations to single- or half- precision based on distance. We thus exploit mathematical structure to migrate MLE to a three-precision approximation that takes advantage of contemporary architectures offering BLAS3-like operations in a single instruction that are extremely fast for reduced precision. We illustrate application-expected accuracy worthy of double-precision from a majority half-precision computation, in a context where uniform single precision is by itself insufficient. In tackling the complexity and imbalance caused by the mixing of three precisions, we deploy the PaRSEC runtime system. PaRSEC delivers on-demand casting of precisions while orchestrating tasks and data movement in a multi-GPU distributed-memory environment within a tile-based Cholesky factorization. Application-expected accuracy is maintained while achieving up to 1.59 by mixing FP64/FP32 operations on 1536 nodes of HAWK or 4096 nodes of Shaheen-II, and up to 2.64X by mixing FP64/FP32/FP16 operations on 128 nodes of Summit, relative to FP64-only operations, This translates into up to 4.5, 4.7, and 9.1 (mixed) PFlop/s sustained performance, respectively, demonstrating a synergistic combination of exascale architecture, dynamic runtime software, and algorithmic adaptation applied to challenging environmental problems.Citation
Abdulah, S., Cao, Q., Pei, Y., Bosilca, G., Dongarra, J., Genton, M. G., Keyes, D. E., Ltaief, H., & Sun, Y. (2021). Accelerating Geostatistical Modeling and Prediction With Mixed-Precision Computations: A High-Productivity Approach with PaRSEC. KAUST Research Repository. https://doi.org/10.25781/KAUST-8D58Hae974a485f413a2113503eed53cd6c53
10.25781/KAUST-8D58H
Scopus Count
Collections
Technical ReportsThe following license files are associated with this item: