D936Y and Other Mutations in the Fusion Core of the SARS-CoV-2 Spike Protein Heptad Repeat 1: Frequency, Geographical Distribution, and Structural Effect.
Type
ArticleKAUST Department
KAUST Catalysis Center (KCC)Physical Science and Engineering (PSE) Division
Chemical Science Program
Date
2021-04-30Submitted Date
2021-03-17Permanent link to this record
http://hdl.handle.net/10754/669110
Metadata
Show full item recordAbstract
The crown of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is constituted by its spike (S) glycoprotein. S protein mediates the SARS-CoV-2 entry into the host cells. The "fusion core" of the heptad repeat 1 (HR1) on S plays a crucial role in the virus infectivity, as it is part of a key membrane fusion architecture. While SARS-CoV-2 was becoming a global threat, scientists have been accumulating data on the virus at an impressive pace, both in terms of genomic sequences and of three-dimensional structures. On 15 February 2021, from the SARS-CoV-2 genomic sequences in the GISAID resource, we collected 415,673 complete S protein sequences and identified all the mutations occurring in the HR1 fusion core. This is a 21-residue segment, which, in the post-fusion conformation of the protein, gives many strong interactions with the heptad repeat 2, bringing viral and cellular membranes in proximity for fusion. We investigated the frequency and structural effect of novel mutations accumulated over time in such a crucial region for the virus infectivity. Three mutations were quite frequent, occurring in over 0.1% of the total sequences. These were S929T, D936Y, and S949F, all in the N-terminal half of the HR1 fusion core segment and particularly spread in Europe and USA. The most frequent of them, D936Y, was present in 17% of sequences from Finland and 12% of sequences from Sweden. In the post-fusion conformation of the unmutated S protein, D936 is involved in an inter-monomer salt bridge with R1185. We investigated the effect of the D936Y mutation on the pre-fusion and post-fusion state of the protein by using molecular dynamics, showing how it especially affects the latter one.Citation
Oliva, R., Shaikh, A. R., Petta, A., Vangone, A., & Cavallo, L. (2021). D936Y and Other Mutations in the Fusion Core of the SARS-CoV-2 Spike Protein Heptad Repeat 1: Frequency, Geographical Distribution, and Structural Effect. Molecules, 26(9), 2622. doi:10.3390/molecules26092622Sponsors
We gratefully acknowledge all the authors from the originating laboratories responsible for obtaining the specimens and the submitting laboratories where genetic sequence data were generated and shared via the GISAID Initiative, on which this research is based. R.O. thanks MIUR-FFABR (Fondo per il Finanziamento Attività Base di Ricerca) for funding. L.C. acknowledges King Abdullah University of Science and Technology (KAUST) for support and the KAUST Supercomputing Laboratory for providing computational resources.Publisher
MDPI AGJournal
MoleculesPubMed ID
33946306Additional Links
https://www.mdpi.com/1420-3049/26/9/2622ae974a485f413a2113503eed53cd6c53
10.3390/molecules26092622
Scopus Count
Except where otherwise noted, this item's license is described as This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Related articles
- Spike protein fusion loop controls SARS-CoV-2 fusogenicity and infectivity.
- Authors: Pal D
- Issue date: 2021 Jun
- The effect of the D614G substitution on the structure of the spike glycoprotein of SARS-CoV-2.
- Authors: Benton DJ, Wrobel AG, Roustan C, Borg A, Xu P, Martin SR, Rosenthal PB, Skehel JJ, Gamblin SJ
- Issue date: 2021 Mar 2
- Inhibition of Coronavirus Entry <i>In Vitro</i> and <i>Ex Vivo</i> by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain.
- Authors: Outlaw VK, Bovier FT, Mears MC, Cajimat MN, Zhu Y, Lin MJ, Addetia A, Lieberman NAP, Peddu V, Xie X, Shi PY, Greninger AL, Gellman SH, Bente DA, Moscona A, Porotto M
- Issue date: 2020 Oct 20
- Mutations in membrane-fusion subunit of spike glycoprotein play crucial role in the recent outbreak of COVID-19.
- Authors: Podder S, Ghosh A, Ghosh T
- Issue date: 2021 May
- Insights into the structural and dynamical changes of spike glycoprotein mutations associated with SARS-CoV-2 host receptor binding.
- Authors: Ahamad S, Kanipakam H, Gupta D
- Issue date: 2022 Jan