• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Moving Towards Water Security: Mitigating Emerging Contaminants in Treated Wastewater for Sustainable Reuse

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    PhD Thesis-Nicolas Augsburger-2021 final.pdf
    Size:
    2.340Mb
    Format:
    PDF
    Download
    View more filesView fewer files
    Type
    Dissertation
    Authors
    Augsburger, Nicolas cc
    Advisors
    Hong, Pei-Ying cc
    Committee members
    Daffonchio, Daniele cc
    Saikaly, Pascal cc
    Lee, Yunho
    Program
    Environmental Science and Engineering
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Date
    2021-04
    Permanent link to this record
    http://hdl.handle.net/10754/668955
    
    Metadata
    Show full item record
    Abstract
    Continuous increases in the interest and implementation of wastewater reuse due to intensified water stress has escalated the concerns of emerging contaminants. Among emerging contaminants there are microbial (antibiotic resistance) and chemical (pharmaceuticals) elements which have been shown to survive wastewater treatment. This dissertation aims to mitigate emerging contaminants by means of understanding and/or developing the appropriate disinfection strategies, with the intention to provide knowledge that would facilitate towards safe and sustainable water reuse. The first part of this thesis explored microbial risk component of antibiotic resistance. Antibiotic resistance genes are abundant in treated wastewater, and only pose a risk if taken up by potential pathogens through natural transformation. Our results showed that solar irradiation can double natural transformation rates, mediated by reactive oxygen species generation, which led to upregulation in DNA repair and competence genes in Acinetobacter baylyi ADP1. Treatment with UV-C254 nm irradiation also resulted in upregulation in DNA repair genes, nevertheless we observed a decrease in natural transformation rates. These results imply that direct damage of antibiotic resistance genes (ARG) could inhibit their spread and therefore risk, despite other factors contributing to the contrary. The next chapter in this dissertation postulated that the UV/H2O2 combination would be ideal to treat microbial and chemical emerging contaminants in effluent generated from an anaerobic membrane bioreactor. We demonstrated that at an optimal UV intensity and H2O2 concentration, we were able to achieve a 2 and 6-log reduction of the two antibiotic resistance genes and bacteria and used in this study, respectively, and more than 90% removal of the three pharmaceutical compounds. These observations suggest that UV/H2O2 has great potential in treating effluent with high nitrogen concentrations, preserving the fertilization benefit of AnMBR effluent. Overall, this dissertation revealed the potential of UV-based treatments for treated wastewater intended for reuse. Post-membrane processes effluent allows one to deploy UV-C254 nm to selectively target DNA and therefore ARB and ARG that may be still present in the treated wastewater. At the same time, coupling chemical oxidants with UV-C (i.e., UV AOP) would further enhance the means to simultaneously oxidize and degrade potentially harmful chemical contaminants.
    Citation
    Augsburger, N. (2021). Moving Towards Water Security: Mitigating Emerging Contaminants in Treated Wastewater for Sustainable Reuse. KAUST Research Repository. https://doi.org/10.25781/KAUST-9SSC4
    DOI
    10.25781/KAUST-9SSC4
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-9SSC4
    Scopus Count
    Collections
    Biological and Environmental Science and Engineering (BESE) Division; Environmental Science and Engineering Program; PhD Dissertations

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.