• Login
    View Item 
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    •   Home
    • Theses and Dissertations
    • PhD Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Wireless Magnetic Sensors to Empower the Next Technological Revolution

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Almansouri_Thesis_v12_Final.pdf
    Size:
    4.648Mb
    Format:
    PDF
    Description:
    Final Dissertation
    Download
    Type
    Dissertation
    Authors
    Almansouri, Abdullah S. cc
    Advisors
    Kosel, Jürgen cc
    Committee members
    Salama, Khaled N. cc
    Alshareef, Husam N. cc
    Al Attar, Talal
    Sonkusale, Sameer
    Program
    Electrical Engineering
    KAUST Department
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Date
    2021-04
    Embargo End Date
    2022-04-24
    Permanent link to this record
    http://hdl.handle.net/10754/668914
    
    Metadata
    Show full item record
    Access Restrictions
    At the time of archiving, the student author of this dissertation opted to temporarily restrict access to it. The full text of this dissertation will become available to the public after the expiration of the embargo on 2022-04-24.
    Abstract
    The next technological revolution, Industry 4.0, is envisioned as a digitally connected ecosystem where machines and gadgets are driven by artificial intelligence. By 2025, more than 75 billion devices are projected to serve this revolution. Many of which are to be integrated into the fabrics of everyday life in the form of smart wireless sensors. Still, two major challenges should be addressed to realize truly wireless and wearable sensors. First, the sensors should be flexible and stretchable, allowing for comfortable wearing. Second, the electronics should scavenge the energy it requires entirely from the environment, thus, eliminating the need for batteries, which are bulky, create ecological problems, etc. By addressing these two challenges, this dissertation paves the way for truly wearable sensors. The first part of the dissertation introduces a biocompatible magnetic skin with exceptional physical properties. It is highly-flexible, breathable, durable, and realizable in any desired shape and color. Attached to the skin of a user, the magnetic skin itself does not require any wiring, allowing to place the electronics and delicate components of the wireless sensor in a convenient nearby location to track the magnetic field produced by the magnetic skin. To demonstrate the performance of the magnetic skin, wearable systems are implemented as an assistive technology for severe quadriplegics, a touchless control solution for eliminating cross contaminations, and for monitoring blinking and eye movement for sleep laboratories. The second part of the dissertation is about wirelessly powering wireless sensors. In doing so, radio frequency (RF) rectifiers are a bottleneck, especially for ambient RF energy harvesting. Therefore, two RF rectifiers are introduced in standard CMOS technologies. The first architecture utilizes double-sided diodes to reduce the reverse leakage current, thus achieving a high dynamic range of 6.7 dB, -19.2 dBm sensitivity, and 86% efficiency. The second rectifier implements a dual-mode technique to lower the effective threshold voltage by 37%. Consequently, it achieves a 38% efficiency at −35 dBm input power and a 10.1 dB dynamic range while maintaining the same efficiency and sensitivity. Ultimately, combining these wireless powering techniques with the magnetic skin allows for truly wireless and wearable solutions.
    Citation
    Almansouri, A. S. (2021). Wireless Magnetic Sensors to Empower the Next Technological Revolution. KAUST Research Repository. https://doi.org/10.25781/KAUST-M5I3C
    DOI
    10.25781/KAUST-M5I3C
    ae974a485f413a2113503eed53cd6c53
    10.25781/KAUST-M5I3C
    Scopus Count
    Collections
    PhD Dissertations; Electrical and Computer Engineering Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.