Show simple item record

dc.contributor.authorChavarrio Cañas, Javier Eduardo
dc.contributor.authorMonge Palacios, Manuel
dc.contributor.authorGrajales Gonzalez, Edwing
dc.contributor.authorSarathy, Mani
dc.date.accessioned2021-04-19T07:47:32Z
dc.date.available2021-04-19T07:47:32Z
dc.date.issued2021-04-09
dc.date.submitted2021-02-23
dc.identifier.citationChavarrio Cañas, J. E., Monge-Palacios, M., Grajales-González, E., & Sarathy, S. M. (2021). Early Chemistry of Nicotine Degradation in Heat-Not-Burn Smoking Devices and Conventional Cigarettes: Implications for Users and Second- and Third-Hand Smokers. The Journal of Physical Chemistry A. doi:10.1021/acs.jpca.1c01650
dc.identifier.issn1089-5639
dc.identifier.issn1520-5215
dc.identifier.pmid33834773
dc.identifier.doi10.1021/acs.jpca.1c01650
dc.identifier.urihttp://hdl.handle.net/10754/668836
dc.description.abstractNicotine exposure results in health risks not only for smokers but also for second- and third-hand smokers. Unraveling nicotine's degradation mechanism and the harmful chemicals that are produced under different conditions is vital to assess exposure risks. We performed a theoretical study to describe the early chemistry of nicotine degradation by investigating two important reactions that nicotine can undergo: hydrogen abstraction by hydroxyl radicals and unimolecular dissociation. The former contributes to the control of the degradation mechanism below 800 K due to a non-Arrhenius kinetics, which implies an enhancement of reactivity as temperature decreases. The latter becomes important at higher temperatures due to its larger activation energy. This change in the degradation mechanism is expected to affect the composition of vapors inhaled by smokers and room occupants. Conventional cigarettes, which operate at temperatures higher than 1000 K, are more prone to yield harmful pyridinyl radicals via nicotine dissociation, while nicotine in electronic cigarettes and vaporizers, with operating temperatures below 600 K, will be more likely degraded by hydroxyl radicals, resulting in a vapor with a different composition. Although low-temperature nicotine delivery devices have been claimed to be less harmful due to their nonburning operating conditions, the non-Arrhenius kinetics that we observed for the degradation mechanism below 873 K suggests that nicotine degradation may be more rapidly initiated as temperature is reduced, indicating that these devices may be more harmful than it is commonly assumed.
dc.description.sponsorshipThe research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).
dc.description.sponsorshipWe express thanks for the resources of the Supercomputing Laboratory at KAUST. We are grateful to Marcus Hanwell, Chris Harris, and Alessandro Genova for kindly releasing their Open Chemistry Python package and open source scripts to build our molecular structures.
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acs.jpca.1c01650
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpca.1c01650.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleEarly Chemistry of Nicotine Degradation in Heat-Not-Burn Smoking Devices and Conventional Cigarettes: Implications for Users and Second- and Third-Hand Smokers
dc.typeArticle
dc.contributor.departmentClean Combustion Research Center (CCRC), Physical Science and Engineering (PSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
dc.contributor.departmentClean Combustion Research Center
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentChemical Engineering Program
dc.identifier.journalThe Journal of Physical Chemistry A
dc.rights.embargodate2022-04-09
dc.eprint.versionPost-print
kaust.personChavarrio Cañas, Javier E.
kaust.personMonge Palacios, Manuel
kaust.personGrajales Gonzalez, Edwing
kaust.personSarathy, Mani
dc.date.accepted2021-03-29
refterms.dateFOA2021-04-19T07:48:26Z


Files in this item

Thumbnail
Name:
acs.jpca.1c01650.pdf
Size:
4.460Mb
Format:
PDF
Description:
Accepted manuscript
Embargo End Date:
2022-04-09

This item appears in the following Collection(s)

Show simple item record

This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpca.1c01650.
Except where otherwise noted, this item's license is described as This document is the Accepted Manuscript version of a Published Work that appeared in final form in The Journal of Physical Chemistry A, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acs.jpca.1c01650.