• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Broadband Coherent Raman Scattering Microscopy

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Polli, Dario
    Kumar, Vikas
    Valensise, Carlo M.
    Marangoni, Marco
    Cerullo, Giulio cc
    KAUST Grant Number
    OSR-2016-CRG5-3017-01
    Date
    2018-07-31
    Permanent link to this record
    http://hdl.handle.net/10754/668683
    
    Metadata
    Show full item record
    Abstract
    Spontaneous Raman (SR) microscopy allows label-free chemically specific imaging based on the vibrational response of molecules; however, due to the low Raman scattering cross section, it is intrinsically slow. Coherent Raman scattering (CRS) techniques, by coherently exciting vibrational oscillators in the focal volume, increase signal levels by several orders of magnitude under appropriate conditions. In its single-frequency version, CRS microscopy has reached very high imaging speeds, up to the video rate; however, it provides information which is not sufficient to distinguish spectrally overlapped chemical species within complex heterogeneous systems, such as cells and tissues. Broadband CRS combines the acquisition speed of CRS with the information content of SR, but it is technically very demanding. In this Review, the current state of the art in broadband CRS microscopy, both in the coherent anti-Stokes Raman scattering (CARS) and the stimulated Raman scattering (SRS) versions are reviewed. Different technical solutions for broadband CARS and SRS, working both in the frequency and in the time domains, are compared and their merits and drawbacks assessed.
    Citation
    Polli, D., Kumar, V., Valensise, C. M., Marangoni, M., & Cerullo, G. (2018). Broadband Coherent Raman Scattering Microscopy. Laser & Photonics Reviews, 12(9), 1800020. doi:10.1002/lpor.201800020
    Sponsors
    This work has been supported by European Research Council Consolidator Grant VIBRA (ERC-2014-CoG 648615), Horizon2020 GRAPHENE Flagship (785219), and KAUST (OSR-2016-CRG5-3017-01).
    Publisher
    Wiley
    Journal
    Laser & Photonics Reviews
    DOI
    10.1002/lpor.201800020
    Additional Links
    http://doi.wiley.com/10.1002/lpor.201800020
    ae974a485f413a2113503eed53cd6c53
    10.1002/lpor.201800020
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.