• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Approximately counting triangles in large graph streams including edge duplicates with a fixed memory usage

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Wang, Pinghui
    Qi, Yiyan
    Sun, Yu
    Zhang, Xiangliang cc
    Tao, Jing
    Guan, Xiaohong
    KAUST Department
    Computer Science Program
    Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division
    Machine Intelligence & kNowledge Engineering Lab
    Date
    2017-10
    Permanent link to this record
    http://hdl.handle.net/10754/668645
    
    Metadata
    Show full item record
    Abstract
    Counting triangles in a large graph is important for detecting network anomalies such as spam web pages and suspicious accounts (e.g., fraudsters and advertisers) on online social networks. However, it is challenging to compute the number of triangles in a large graph represented as a stream of edges with a low computational cost when given a limited memory. Recently, several effective sampling-based approximation methods have been developed to solve this problem. However, they assume the graph stream of interest contains no duplicate edges, which does not hold in many real-world graph streams (e.g., phone calling networks). In this paper, we observe that these methods exhibit a large estimation error or computational cost even when modified to deal with duplicate edges using deduplication techniques such as Bloom filter and hash-based sampling. To solve this challenge, we design a one-pass streaming algorithm for uniformly sampling distinct edges at a high speed. Compared to state-of-the-art algorithms, our algorithm reduces the sampling cost per edge from O(log k) (k is the maximum number of sampled edges determined by the available memory space) to O(1) without using any additional memory space. Based on sampled edges, we develop a simple yet accurate method to infer the number of triangles in the original graph stream. We conduct extensive experiments on a variety of real-world large graphs, and the results demonstrate that our method is several times more accurate and faster than state-of-the-art methods with the same memory usage.
    Citation
    Wang, P., Qi, Y., Sun, Y., Zhang, X., Tao, J., & Guan, X. (2017). Approximately counting triangles in large graph streams including edge duplicates with a fixed memory usage. Proceedings of the VLDB Endowment, 11(2), 162–175. doi:10.14778/3149193.3149197
    Sponsors
    The research presented in this paper is supported in part by National Natural Science Foundation of China (U1301254, 61603290, 61602371), 111 International Collaboration Program of China, Ministry of Education&China Mobile Research Fund (MCM20160311), Natural Science Foundation of Jiangsu Province (SBK2014021758), Prospective Joint Research of Industry-Academia-Research Joint Innovation Funding of Jiangsu Province (BY2014074), Shenzhen Basic Research Grant (JCYJ20160229195940462), China Postdoctoral Science Foundation (2015M582663), Natural Science Basic Research Plan in Shaanxi Province of China (2016JQ6034).
    Publisher
    VLDB Endowment
    Journal
    Proceedings of the VLDB Endowment
    DOI
    10.14778/3149193.3149197
    Additional Links
    https://dl.acm.org/doi/10.14778/3149193.3149197
    ae974a485f413a2113503eed53cd6c53
    10.14778/3149193.3149197
    Scopus Count
    Collections
    Articles; Computer Science Program; Computer, Electrical and Mathematical Science and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.