Show simple item record

dc.contributor.authorElmalaki, Salma
dc.contributor.authorShoukry, Yasser
dc.contributor.authorSrivastava, Mani
dc.date.accessioned2021-03-31T06:54:40Z
dc.date.available2021-03-31T06:54:40Z
dc.date.issued2018-11-04
dc.identifier.citationElmalaki, S., Shoukry, Y., & Srivastava, M. (2018). Internet of Personalized and Autonomous Things (IoPAT). Proceedings of the 1st ACM International Workshop on Smart Cities and Fog Computing. doi:10.1145/3277893.3277901
dc.identifier.isbn9781450360517
dc.identifier.doi10.1145/3277893.3277901
dc.identifier.urihttp://hdl.handle.net/10754/668424
dc.description.abstractIoT devices are permeating every corner of our lives today paving the road for more substantial smart systems. Despite their ability to collect and analyze a significant amount of sensory data, traditional IoT typically depends on fixed policies and schedules to enhance user experience. However, fixed policies that do not account for variations in human mood, reactions, and expectations, fail to achieve the promised user experience. In this paper, we propose an architecture for personalized and autonomous IoT systems that weaves personalization and context-awareness into the very fabric of smart systems. By building upon ideas from reinforcement learning, we show—using an example of smart and personalized home services—how the proposed architecture can adapt to human behaviors that are varying between individuals and vary, for the same individual, across time while addressing some of the security and privacy challenges.
dc.description.sponsorshipThis research was supported in part by the U.S. Army Research Laboratory under Cooperative Agreement W911NF-17-2-0196, by the National Science Foundation under award # OAC-1640813 and IIS-1636916, and the King Abdullah University of Science and Technology (KAUST) through its Sensor Innovation research program. The Microsoft Research PhD Fellowship has supported Salma Elmalaki. Any findings in this material are those of the author(s) and do not reflect the views of any of the above funding agencies. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.
dc.publisherAssociation for Computing Machinery (ACM)
dc.relation.urlhttps://dl.acm.org/doi/10.1145/3277893.3277901
dc.relation.urlhttps://dl.acm.org/doi/pdf/10.1145/3277893.3277901
dc.rightsArchived with thanks to ACM
dc.titleInternet of Personalized and Autonomous Things (IoPAT)
dc.typeConference Paper
dc.conference.date2018-11-04
dc.conference.name1st ACM International Workshop on Smart Cities and Fog Computing, CitiFog 2018, co-located with ACM SenSys 2018 and BuildSys 2018
dc.conference.locationShenzhen, CHN
dc.eprint.versionPre-print
dc.contributor.institutionUniversity of California, Los Angeles
dc.contributor.institutionUniversity of Maryland, College Park
dc.identifier.pages35-40
kaust.grant.numberSensor Innovation research program
dc.identifier.eid2-s2.0-85058214546


This item appears in the following Collection(s)

Show simple item record