Unbiased approximation of posteriors via coupled particle Markov chain Monte Carlo
Name:
cpMCMC_210308.pdf
Size:
696.1Kb
Format:
PDF
Description:
Accepted Manuscript
Embargo End Date:
2023-04-23
Type
ArticleKAUST Department
Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology, Computer, Thuwal, Saudi ArabiaComputer, Electrical and Mathematical Science and Engineering (CEMSE) Division
Date
2022-04-23Embargo End Date
2023-04-23Permanent link to this record
http://hdl.handle.net/10754/668413
Metadata
Show full item recordAbstract
Markov chain Monte Carlo (MCMC) is a powerful methodology for the approximation of posterior distributions. However, the iterative nature of MCMC does not naturally facilitate its use with modern highly parallel computation on HPC and cloud environments. Another concern is the identification of the bias and Monte Carlo error of produced averages. The above have prompted the recent development of fully (‘embarrassingly’) parallel unbiased Monte Carlo methodology based on coupling of MCMC algorithms. A caveat is that formulation of effective coupling is typically not trivial and requires model-specific technical effort. We propose coupling of MCMC chains deriving from sequential Monte Carlo (SMC) by considering adaptive SMC methods in combination with recent advances in unbiased estimation for state-space models. Coupling is then achieved at the SMC level and is, in principle, not problem-specific. The resulting methodology enjoys desirable theoretical properties. A central motivation is to extend unbiased MCMC to more challenging targets compared to the ones typically considered in the relevant literature. We illustrate the effectiveness of the algorithm via application to two complex statistical models: (i) horseshoe regression; (ii) Gaussian graphical models.Citation
van den Boom, W., Jasra, A., De Iorio, M., Beskos, A., & Eriksson, J. G. (2022). Unbiased approximation of posteriors via coupled particle Markov chain Monte Carlo. Statistics and Computing, 32(3). https://doi.org/10.1007/s11222-022-10093-3Sponsors
We thank the referees for many useful suggestions that helped to greatly improve the content of the paper.Supported by the Singapore Ministry of Education Academic Research Fund Tier 2 (grant number MOE2019-T2-2-100) and the Singapore National Research Foundation under its Translational and Clinical Research Flagship Programme and administered by the Singapore Ministry of Health’s National Medical Research Council (grant number NMRC/TCR/004-NUS/2008; NMRC/TCR/012-NUHS/2014). Additional funding is provided by the Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research.
Publisher
Springer Science and Business Media LLCJournal
STATISTICS AND COMPUTINGarXiv
2103.05176Additional Links
https://link.springer.com/10.1007/s11222-022-10093-3ae974a485f413a2113503eed53cd6c53
10.1007/s11222-022-10093-3