Show simple item record

dc.contributor.authorDing, Wei
dc.contributor.authorZhang, Weipeng
dc.contributor.authorMannalamkunnath Alikunhi, Nabeel
dc.contributor.authorBatang, Zenon B.
dc.contributor.authorPei, Bite
dc.contributor.authorWang, Ruojun
dc.contributor.authorChen, Lianguo
dc.contributor.authorAl-Suwailem, Abdulaziz M.
dc.contributor.authorQian, Pei-Yuan
dc.date.accessioned2021-03-29T12:36:58Z
dc.date.available2021-03-29T12:36:58Z
dc.date.issued2019-01-05
dc.identifier.citationDing, W., Zhang, W., Alikunhi, N. M., Batang, Z., Pei, B., Wang, R., … Qian, P.-Y. (2019). Metagenomic Analysis of Zinc Surface–Associated Marine Biofilms. Microbial Ecology, 77(2), 406–416. doi:10.1007/s00248-018-01313-3
dc.identifier.issn0095-3628
dc.identifier.issn1432-184X
dc.identifier.pmid30612183
dc.identifier.doi10.1007/s00248-018-01313-3
dc.identifier.urihttp://hdl.handle.net/10754/668376
dc.description.abstractBiofilms are a significant source of marine biofouling. Marine biofilm communities are established when microorganisms adhere to immersed surfaces. Despite the microbe-inhibiting effect of zinc surfaces, microbes can still attach to the surface and form biofilms. However, the diversity of biofilm-forming microbes that can attach to zinc surfaces and their common functional features remain elusive. Here, by analyzing 9,000,000 16S rRNA gene amplicon sequences and 270 Gb of metagenomic data, we comprehensively explored the taxa and functions related to biofilm formation in subtidal zones of the Red Sea. A clear difference was observed between the biofilm and adjacent seawater microbial communities in terms of the taxonomic structure at phylum and genus levels, and a huge number of genera were only present in the biofilms. Saturated alpha-diversity curves suggested the existence of more than 14,000 operational taxonomic units in one biofilm sample, which is much higher than previous estimates. Remarkably, the biofilms contained abundant and diverse transposase genes, which were localized along microbial chromosomal segments and co-existed with genes related to metal ion transport and resistance. Genomic analyses of two cyanobacterial strains that were abundant in the biofilms revealed a variety of metal ion transporters and transposases. Our analyses revealed the high diversity of biofilm-forming microbes that can attach to zinc surfaces and the ubiquitous role of transposase genes in microbial adaptation to toxic metal surfaces.
dc.description.sponsorshipThis study was supported by a research grant from China Ocean Mineral Resource Research and Development Association (COMRRDA17/Sc01) and an award from the King Abdullah University of Science and Technology to P.Y. Qian. The authors are grateful to Ms. Alice Cheung for English editing.
dc.publisherSpringer Nature
dc.relation.urlhttp://link.springer.com/10.1007/s00248-018-01313-3
dc.rightsThe final publication is available at Springer via http://dx.doi.org/10.1007/s00248-018-01313-3
dc.titleMetagenomic Analysis of Zinc Surface–Associated Marine Biofilms
dc.typeArticle
dc.contributor.departmentField & Lab Research Support
dc.contributor.departmentBeacon Development Company
dc.contributor.departmentOffice of the CAO
dc.identifier.journalMicrobial Ecology
dc.rights.embargodate2020-01-05
dc.eprint.versionPost-print
dc.contributor.institutionDivision of Life Science, Hong Kong University of Science and Technology, Hong Kong
dc.contributor.institutionDepartment of Ocean Science, Hong Kong University of Science and Technology, Hong Kong
dc.identifier.volume77
dc.identifier.issue2
dc.identifier.pages406-416
kaust.personMannalamkunnath Alikunhi, Nabeel
kaust.personBatang, Zenon B.
kaust.personAl-Suwailem, Abdulaziz M.
dc.identifier.eid2-s2.0-85059570567


This item appears in the following Collection(s)

Show simple item record