Type
ArticleAuthors
Ding, WeiZhang, Weipeng
Mannalamkunnath Alikunhi, Nabeel
Batang, Zenon B.

Pei, Bite
Wang, Ruojun
Chen, Lianguo
Al-Suwailem, Abdulaziz M.
Qian, Pei-Yuan
Date
2019-01-05Embargo End Date
2020-01-05Permanent link to this record
http://hdl.handle.net/10754/668376
Metadata
Show full item recordAbstract
Biofilms are a significant source of marine biofouling. Marine biofilm communities are established when microorganisms adhere to immersed surfaces. Despite the microbe-inhibiting effect of zinc surfaces, microbes can still attach to the surface and form biofilms. However, the diversity of biofilm-forming microbes that can attach to zinc surfaces and their common functional features remain elusive. Here, by analyzing 9,000,000 16S rRNA gene amplicon sequences and 270 Gb of metagenomic data, we comprehensively explored the taxa and functions related to biofilm formation in subtidal zones of the Red Sea. A clear difference was observed between the biofilm and adjacent seawater microbial communities in terms of the taxonomic structure at phylum and genus levels, and a huge number of genera were only present in the biofilms. Saturated alpha-diversity curves suggested the existence of more than 14,000 operational taxonomic units in one biofilm sample, which is much higher than previous estimates. Remarkably, the biofilms contained abundant and diverse transposase genes, which were localized along microbial chromosomal segments and co-existed with genes related to metal ion transport and resistance. Genomic analyses of two cyanobacterial strains that were abundant in the biofilms revealed a variety of metal ion transporters and transposases. Our analyses revealed the high diversity of biofilm-forming microbes that can attach to zinc surfaces and the ubiquitous role of transposase genes in microbial adaptation to toxic metal surfaces.Citation
Ding, W., Zhang, W., Alikunhi, N. M., Batang, Z., Pei, B., Wang, R., … Qian, P.-Y. (2019). Metagenomic Analysis of Zinc Surface–Associated Marine Biofilms. Microbial Ecology, 77(2), 406–416. doi:10.1007/s00248-018-01313-3Sponsors
This study was supported by a research grant from China Ocean Mineral Resource Research and Development Association (COMRRDA17/Sc01) and an award from the King Abdullah University of Science and Technology to P.Y. Qian. The authors are grateful to Ms. Alice Cheung for English editing.Publisher
Springer NatureJournal
Microbial EcologyPubMed ID
30612183Additional Links
http://link.springer.com/10.1007/s00248-018-01313-3ae974a485f413a2113503eed53cd6c53
10.1007/s00248-018-01313-3
Scopus Count
Collections
ArticlesRelated articles
- High-throughput sequencing analysis of marine pioneer surface-biofilm bacteria communities on different PDMS-based coatings.
- Authors: Sun Y, Lang Y, Yan Z, Wang L, Zhang Z
- Issue date: 2020 Jan 1
- Molecular techniques revealed highly diverse microbial communities in natural marine biofilms on polystyrene dishes for invertebrate larval settlement.
- Authors: Lee OO, Chung HC, Yang J, Wang Y, Dash S, Wang H, Qian PY
- Issue date: 2014 Jul
- Influence of Darkness and Aging on Marine and Freshwater Biofilm Microbial Communities Using Microcosm Experiments.
- Authors: Hede N, Khandeparker L
- Issue date: 2018 Aug
- Culture dependent and independent analysis and appraisal of early stage biofilm-forming bacterial community composition in the Southern coastal seawater of India.
- Authors: Rajeev M, Sushmitha TJ, Toleti SR, Pandian SK
- Issue date: 2019 May 20
- Does antifouling paint select for antibiotic resistance?
- Authors: Flach CF, Pal C, Svensson CJ, Kristiansson E, Östman M, Bengtsson-Palme J, Tysklind M, Larsson DGJ
- Issue date: 2017 Jul 15