Harnessing the Extracellular Electron Transfer Capability of Geobacter sulfurreducens for Ambient Synthesis of Stable Bifunctional Single-Atom Electrocatalyst for Water Splitting
dc.contributor.author | Pedireddy, Srikanth | |
dc.contributor.author | Jimenez Sandoval, Rodrigo J. | |
dc.contributor.author | Ravva, Mahesh Kumar | |
dc.contributor.author | Nayak, Chandrani | |
dc.contributor.author | Anjum, Dalaver H. | |
dc.contributor.author | Jha, Shambhu Nath | |
dc.contributor.author | Katuri, Krishna | |
dc.contributor.author | Saikaly, Pascal | |
dc.date.accessioned | 2021-03-24T12:54:27Z | |
dc.date.available | 2021-03-24T12:54:27Z | |
dc.date.issued | 2021-03-15 | |
dc.date.submitted | 2021-02-03 | |
dc.identifier.citation | Pedireddy, S., Jimenez-Sandoval, R., Ravva, M. K., Nayak, C., Anjum, D. H., Jha, S. N., … Saikaly, P. E. (2021). Harnessing the Extracellular Electron Transfer Capability of Geobacter sulfurreducens for Ambient Synthesis of Stable Bifunctional Single-Atom Electrocatalyst for Water Splitting. Advanced Functional Materials, 2010916. doi:10.1002/adfm.202010916 | |
dc.identifier.issn | 1616-301X | |
dc.identifier.issn | 1616-3028 | |
dc.identifier.doi | 10.1002/adfm.202010916 | |
dc.identifier.doi | 10.1002/adfm.202170161 | |
dc.identifier.uri | http://hdl.handle.net/10754/668243 | |
dc.description.abstract | Single-atom metal (SA-M) catalysts with high dispersion of active metal sites allow maximum atomic utilization. Conventional synthesis of SA-M catalysts involves high-temperature treatments, leading to low yield with a random distribution of atoms. Herein, a nature-based facile method to synthesize SA-M catalysts (M = Fe, Ir, Pt, Ru, Cu, or Pd) in a single step at ambient temperature, using the extracellular electron transfer capability of Geobacter sulfurreducens (GS), is presented. Interestingly, the SA-M is coordinated to three nitrogen atoms adopting an MN3 on the surface of GS. Dry samples of SA-Ir@GS without further heat treatment show exceptionally high activity for oxygen evolution reaction when compared to benchmark IrO2 catalyst and comparable hydrogen evolution reaction activity to commercial 10 wt% Pt/C. The SA-Ir@GS exhibits the best water-splitting performance compared to other SA-M@GS, showing a low applied potential of 1.65 V to achieve 10 mA cm−2 in 1.0 M KOH with cycling over 5 h. The density functional calculations reveal that the large adsorption energy of H2O and moderate adsorption energies of reactants and reaction intermediates for SA-Ir@GS favorably improve its activity. This synthesis method at room temperature provides a versatile platform for the preparation of SA-M catalysts for various applications by merely altering the metal precursors. | |
dc.description.sponsorship | This work was supported by Competitive Research Grant (URF/1/2985-01-01) from King Abdullah University of Science and Technology to P.E.S. The authors thank the synchrotron facility at the Raja Ramanna Centre for Advanced Technology (RRCAT), Indore, India. The authors are thankful to KAUST Supercomputing Core Lab. | |
dc.publisher | Wiley | |
dc.relation.url | https://onlinelibrary.wiley.com/doi/10.1002/adfm.202010916 | |
dc.rights | Archived with thanks to Advanced Functional Materials | |
dc.title | Harnessing the Extracellular Electron Transfer Capability of Geobacter sulfurreducens for Ambient Synthesis of Stable Bifunctional Single-Atom Electrocatalyst for Water Splitting | |
dc.type | Article | |
dc.contributor.department | Biological and Environmental Science and Engineering (BESE) Division | |
dc.contributor.department | Division of Biological and Environmental Science and Engineering Water Desalination and Reuse Center King Abdullah University of Science and Technology Thuwal 23955-6900 Saudi Arabia | |
dc.contributor.department | Environmental Biotechnology Research Group | |
dc.contributor.department | Environmental Science and Engineering Program | |
dc.contributor.department | KAUST Catalysis Center (KCC) | |
dc.contributor.department | Water Desalination and Reuse Research Center (WDRC) | |
dc.identifier.journal | Advanced Functional Materials | |
dc.rights.embargodate | 2022-03-15 | |
dc.eprint.version | Post-print | |
dc.contributor.institution | Department of Chemistry SRM University AP Amaravati Andhra Pradesh 522502 India | |
dc.contributor.institution | Atomic and Molecular Physics Division Bhabha Atomic Research Centre Trombay Mumbai 400085 India | |
dc.contributor.institution | Department of Physics Khalifa University Abu Dhabi 127788 UAE | |
dc.identifier.pages | 2010916 | |
kaust.person | Pedireddy, Srikanth | |
kaust.person | Jimenez Sandoval, Rodrigo J. | |
kaust.person | Katuri, Krishna | |
kaust.person | Saikaly, Pascal | |
kaust.grant.number | URF/1/2985-01-01 | |
dc.date.accepted | 2021-03-15 | |
dc.identifier.eid | 2-s2.0-85102459018 | |
refterms.dateFOA | 2021-03-25T05:28:06Z | |
kaust.acknowledged.supportUnit | Competitive Research | |
dc.date.published-online | 2021-03-15 | |
dc.date.published-print | 2021-05 |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Biological and Environmental Science and Engineering (BESE) Division
For more information visit: https://bese.kaust.edu.sa/ -
Environmental Science and Engineering Program
For more information visit: https://bese.kaust.edu.sa/study/Pages/EnSE.aspx -
KAUST Catalysis Center (KCC)
-
Water Desalination and Reuse Research Center (WDRC)