A pilot-scale sulfur-based sulfidogenic system for the treatment of Cu-laden electroplating wastewater using real domestic sewage as electron donor.
Type
ArticleAuthors
Li, GuibiaoLiang, Zhensheng
Sun, Jianliang
Qiu, Yanying
Qiu, Chuyin
Liang, Xiaomin
Zhu, Yuhang
Wang, Peng

Li, Yu
Jiang, Feng

KAUST Department
Biological and Environmental Science and Engineering (BESE) DivisionEnvironmental Nanotechnology Lab
Environmental Science and Engineering Program
Water Desalination and Reuse Research Center (WDRC)
Date
2021-03-03Online Publication Date
2021-03-03Print Publication Date
2021-05Embargo End Date
2023-03-11Submitted Date
2020-10-22Permanent link to this record
http://hdl.handle.net/10754/668204
Metadata
Show full item recordAbstract
Elemental sulfur (S0) reduction process has been demonstrated as an attractive and cost-efficient approach for metal-laden wastewater treatment in lab-scale studies. However, the system performance and stability have not been evaluated in pilot- or large-scale wastewater treatment. Especially, the sulfide production rate and microbial community structure may significantly vary from lab-scale system to pilot- or large-scale systems using real domestic sewage as carbon source, which brings questions to this novel technology. In this study, therefore, a pilot-scale sulfur-based sulfidogenic treatment system was newly developed and applied for the treatment of Cu-laden electroplating wastewaters using domestic sewage as carbon source. During the 175-d operation, >99.9% of Cu2+ (i.e., 5580 and 1187 mg Cu/L for two types of electroplating wastewaters) was efficiently removed by the biogenic hydrogen sulfide that produced through S0 reduction. Relatively high level of sulfide production (200 mg S/L) can be achieved by utilizing organics in raw domestic sewage, which was easily affected by the organic content and pH value of the domestic sewage. The long-term feeding of domestic sewage significantly re-shaped the microbial community in sulfur-reducing bioreactors. Compared to the reported lab-scale bioreactors, higher microbial community diversity was found in our pilot-scale bioreactors. The presence of hydrolytic, fermentative and sulfur-reducing bacteria was the critical factor for system stability. Accordingly, a two-step ecological interaction among fermentative and sulfur-reducing bacteria was newly proposed for sulfide production: biodegradable particulate organic carbon (BPOC) was firstly degraded to dissolved organic carbon (DOC) by the hydrolytic and fermentative bacteria. Then, sulfur-reducing bacteria utilized the total DOC (both DOC degraded from BPOC and the original DOC present in domestic sewage) as electron donor and reduced the S0 to sulfide. Afterwards, the sulfide precipitated Cu2+ in the post sedimentation tank. Compared with other reported technologies, the sulfur-based treatment system remarkable reduced the total chemical cost by 87.5‒99.6% for the same level of Cu2+ removal. Therefore, this pilot-scale study demonstrated that S0 reduction process can be a sustainable technology to generate sulfide for the co-treatment of Cu-laden electroplating wastewater and domestic sewage, achieving higher Cu2+removal and higher cost-effectiveness than the conventional technologies.Citation
Li, G., Liang, Z., Sun, J., Qiu, Y., Qiu, C., Liang, X., … Jiang, F. (2021). A pilot-scale sulfur-based sulfidogenic system for the treatment of Cu-laden electroplating wastewater using real domestic sewage as electron donor. Water Research, 195, 116999. doi:10.1016/j.watres.2021.116999Sponsors
The authors acknowledge the support from the National Natural Science Foundation of China (No. 51978289 and 51638005).Publisher
Elsevier BVJournal
Water researchPubMed ID
33714911Additional Links
https://linkinghub.elsevier.com/retrieve/pii/S0043135421001974ae974a485f413a2113503eed53cd6c53
10.1016/j.watres.2021.116999
Scopus Count
Related articles
- pH-dependent biological sulfidogenic processes for metal-laden wastewater treatment: Sulfate reduction or sulfur reduction?
- Authors: Guo J, Li Y, Sun J, Sun R, Zhou S, Duan J, Feng W, Liu G, Jiang F
- Issue date: 2021 Oct 1
- Realizing a high-rate sulfidogenic reactor driven by sulfur-reducing bacteria with organic substrate dosage minimization and cost-effectiveness maximization.
- Authors: Guo J, Wang J, Qiu Y, Sun J, Jiang F
- Issue date: 2019 Dec
- Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.
- Authors: Sun R, Zhang L, Zhang Z, Chen GH, Jiang F
- Issue date: 2018 Mar 15
- Upflow anaerobic sludge blanket reactor--a review.
- Authors: Bal AS, Dhagat NN
- Issue date: 2001 Apr
- Determination of critical operational conditions favoring sulfide production from domestic wastewater treated by a sulfur-utilizing denitrification process.
- Authors: Ghorbel L, Coudert L, Gilbert Y, Mercier G, Blais JF
- Issue date: 2017 Aug 1