Show simple item record

dc.contributor.authorMaity, Bholanath
dc.contributor.authorCao, Zhen
dc.contributor.authorKumawat, Jugal
dc.contributor.authorGupta, Virendrakumar
dc.contributor.authorCavallo, Luigi
dc.date.accessioned2021-03-21T13:14:17Z
dc.date.available2021-03-21T13:14:17Z
dc.date.issued2021-03-17
dc.date.submitted2020-11-08
dc.identifier.citationMaity, B., Cao, Z., Kumawat, J., Gupta, V., & Cavallo, L. (2021). A Multivariate Linear Regression Approach to Predict Ethene/1-Olefin Copolymerization Statistics Promoted by Group 4 Catalysts. ACS Catalysis, 4061–4070. doi:10.1021/acscatal.0c04856
dc.identifier.issn2155-5435
dc.identifier.issn2155-5435
dc.identifier.doi10.1021/acscatal.0c04856
dc.identifier.urihttp://hdl.handle.net/10754/668168
dc.description.abstractWe report a combined multivariate linear regression (MLR) and density functional theory (DFT) approach for predicting the comonomer incorporation rate in the copolymerization of ethene with 1-olefins. The MLR model was trained to correlate the incorporation rate of a set of 19 experimental group 4 catalysts to steric and electronic features of the dichloride catalyst precursors. Although the assembled experimental data were produced in different laboratories and both propene and 1-hexene copolymerization results were considered, the trained MLR model results in a R2 value of 0.82 and a leave-one-out Q2 value of 0.72. The trained model was validated against a validation set comprising 3 catalysts from the literature and not included in the training set plus one catalyst synthesized by us. Except for one literature catalyst, data in the validation set were predicted with reasonable accuracy. Additionally, a catalyst synthesized by us, for which the MLR model predicted a comonomer incorporation of 4.0%, resulted in a 1-hexene experimental incorporation of 4.5–5%. The trained MLR model was used to predict the comonomer incorporation rate of 10 related zirconocenes having structural features similar to the 19 systems in the training set. We further explored the impact of the precatalyst structure on the comonomer incorporation rate by analyzing a set of 15 zirconocenes having steric and electronic features different from those in the training set. These predictions were validated by DFT calculations.
dc.description.sponsorshipL.C. acknowledges the King Abdullah University of Science and Technology (KAUST) for support and the KAUST Supercomputing Laboratory for providing computational resources of the supercomputer Shaheen II.
dc.publisherAmerican Chemical Society (ACS)
dc.relation.urlhttps://pubs.acs.org/doi/10.1021/acscatal.0c04856
dc.rightsThis document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acscatal.0c04856.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleA Multivariate Linear Regression Approach to Predict Ethene/1-Olefin Copolymerization Statistics Promoted by Group 4 Catalysts
dc.typeArticle
dc.contributor.departmentBiological and Environmental Science and Engineering (BESE) Division
dc.contributor.departmentChemical Science Program
dc.contributor.departmentKAUST Catalysis Center (KCC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalACS Catalysis
dc.rights.embargodate2022-03-17
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionReliance Research & Development Centre, Reliance Corporate Park, Reliance Industries Limited, Navi Mumbai 400 701, India
dc.identifier.pages4061-4070
kaust.personMaity, Bholanath
kaust.personCao, Zhen
kaust.personCavallo, Luigi
dc.date.accepted2021-03-05
refterms.dateFOA2021-03-21T13:15:26Z
kaust.acknowledged.supportUnitKAUST Supercomputing Laboratory
kaust.acknowledged.supportUnitsupercomputer Shaheen II
dc.date.published-online2021-03-17
dc.date.published-print2021-04-02


Files in this item

Thumbnail
Name:
acscatal.0c04856.pdf
Size:
1.175Mb
Format:
PDF
Description:
Publisher's version

This item appears in the following Collection(s)

Show simple item record

This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acscatal.0c04856.
Except where otherwise noted, this item's license is described as This document is the Accepted Manuscript version of a Published Work that appeared in final form in ACS Catalysis, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acscatal.0c04856.