• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    Large-eddy simulations of turbulent thermal convection using renormalized viscosity and thermal diffusivity

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Vashishtha, Sumit
    Verma, Mahendra K.
    Samuel, Roshan
    KAUST Grant Number
    project K1052
    Date
    2018-10-24
    Permanent link to this record
    http://hdl.handle.net/10754/668000
    
    Metadata
    Show full item record
    Abstract
    In this paper we employ renormalized viscosity and thermal diffusivity to construct a subgrid-scale model for large eddy simulation (LES) of turbulent thermal convection. For LES, we add νrenâΠu1/3(π/Δ)-4/3 to the kinematic viscosity; here Πu is the turbulent kinetic energy flux, and Δ is the grid spacing. We take subgrid thermal diffusivity to be same as the subgrid kinematic viscosity. We performed LES of turbulent thermal convection on a 1283 grid and compare the results with those obtained from direct numerical simulation (DNS) on a 5123 grid. We started the DNS with random initial condition and forked a LES simulation using the large wave number modes of DNS initial condition. Though the Nusselt number is overestimated in LES as compared to that in DNS, there is a good agreement between the LES and DNS results on the evolution of kinetic energy and entropy, spectra and fluxes of velocity and temperature fields, and the isosurfaces of temperature.
    Citation
    Vashishtha, S., Verma, M. K., & Samuel, R. (2018). Large-eddy simulations of turbulent thermal convection using renormalized viscosity and thermal diffusivity. Physical Review E, 98(4). doi:10.1103/physreve.98.043109
    Sponsors
    We thank Fahad Anwer, Abhishek Kumar, Anando Chatterjee, Shashwat Bhattacharya, Manohar Sharma, and Mohammad Anas for useful discussions. We are grateful to the anonymous referees for their insightful comments. The simulations were performed on the HPC system and Chaos cluster of IIT Kanpur, India, and the Shaheen supercomputer at King Abdullah University of Science and Technology (KAUST), Saudi Arabia. This work was supported by research grants PLANEX/PHY/2015239 from the Indian Space Research Organisation (ISRO), India, and project K1052 by KAUST.
    Publisher
    American Physical Society (APS)
    Journal
    Physical Review E
    DOI
    10.1103/physreve.98.043109
    arXiv
    1806.05916
    Additional Links
    https://link.aps.org/doi/10.1103/PhysRevE.98.043109
    ae974a485f413a2113503eed53cd6c53
    10.1103/physreve.98.043109
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.