Show simple item record

dc.contributor.authorKetcheson, David I.
dc.contributor.authorLeVeque, Randall J.
dc.contributor.authordel Razo, Mauricio J.
dc.date.accessioned2021-03-01T07:07:37Z
dc.date.available2021-03-01T07:07:37Z
dc.date.issued2020-06-26
dc.identifier.citationKetcheson, D. I., LeVeque, R. J., & del Razo, M. J. (2020). Riemann Problems and Jupyter Solutions. doi:10.1137/1.9781611976212
dc.identifier.isbn9781611976205
dc.identifier.isbn9781611976212
dc.identifier.doi10.1137/1.9781611976212
dc.identifier.urihttp://hdl.handle.net/10754/667750
dc.description.abstractThis book addresses an important class of mathematical problems—the Riemann problem—for first-order hyperbolic partial differential equations (PDEs), which arise when modeling wave propagation in applications such as fluid dynamics, traffic flow, acoustics, and elasticity. The solution of the Riemann problem captures essential information about these models and is the key ingredient in modern numerical methods for their solution. This book covers the fundamental ideas related to classical Riemann solutions, including their special structure and the types of waves that arise, as well as the ideas behind fast approximate solvers for the Riemann problem. The emphasis is on the general ideas, but each chapter delves into a particular application. Riemann Problems and Jupyter Solutions - is available in electronic form as a collection of Jupyter notebooks that contain executable computer code and interactive figures and animations, allowing readers to grasp how the concepts presented are affected by important parameters and to experiment by varying those parameters themselves; - is the only interactive book focused entirely on the Riemann problem; and - develops each concept in the context of a specific physical application, helping readers apply physical intuition in learning mathematical concepts. Graduate students and researchers working in the analysis and/or numerical solution of hyperbolic PDEs will find this book of interest. This includes mathematicians, as well as scientists and engineers, working with applications like fluid dynamics, water waves, traffic modeling, or electromagnetism. Educators interested in developing instructional materials using Jupyter notebooks will also find this book useful. The book is appropriate for courses in Numerical Methods for Hyperbolic PDEs and Analysis of Hyperbolic PDEs, and it can be a great supplement for courses in computational fluid dynamics, acoustics, and gas dynamics.
dc.publisherSociety for Industrial & Applied Mathematics (SIAM)
dc.relation.haspartDOI:10.1137/1.9781611976212.bm
dc.relation.haspartDOI:10.1137/1.9781611976212.ch1
dc.relation.haspartDOI:10.1137/1.9781611976212.ch2
dc.relation.haspartDOI:10.1137/1.9781611976212.ch3
dc.relation.haspartDOI:10.1137/1.9781611976212.ch4
dc.relation.haspartDOI:10.1137/1.9781611976212.ch5
dc.relation.haspartDOI:10.1137/1.9781611976212.ch6
dc.relation.haspartDOI:10.1137/1.9781611976212.ch7
dc.relation.haspartDOI:10.1137/1.9781611976212.ch8
dc.relation.haspartDOI:10.1137/1.9781611976212.ch9
dc.relation.haspartDOI:10.1137/1.9781611976212.ch10
dc.relation.haspartDOI:10.1137/1.9781611976212.ch11
dc.relation.haspartDOI:10.1137/1.9781611976212.ch12
dc.relation.haspartDOI:10.1137/1.9781611976212.ch13
dc.relation.haspartDOI:10.1137/1.9781611976212.ch14
dc.relation.haspartDOI:10.1137/1.9781611976212.fm
dc.relation.urlhttps://epubs.siam.org/doi/book/10.1137/1.9781611976212
dc.titleRiemann Problems and Jupyter Solutions
dc.typeBook
dc.contributor.departmentApplied Mathematics and Computational Science Program
dc.contributor.departmentComputer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
dc.contributor.departmentNumerical Mathematics Group
dc.contributor.institutionUniversity of Washington, Seattle, Washington, USA
dc.contributor.institutionFreie Universität Berlin, Berlin, Germany
kaust.personKetcheson, David I.


This item appears in the following Collection(s)

Show simple item record