• Login
    View Item 
    •   Home
    • Research
    • Preprints
    • View Item
    •   Home
    • Research
    • Preprints
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguidePlumX LibguideSubmit an Item

    Statistics

    Display statistics

    VisualGPT: Data-efficient Image Captioning by Balancing Visual Input and Linguistic Knowledge from Pretraining

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Preprintfile1.pdf
    Size:
    8.430Mb
    Format:
    PDF
    Description:
    Pre-print
    Download
    Type
    Preprint
    Authors
    Chen, Jun
    Guo, Han
    Yi, Kai
    Li, Boyang
    Elhoseiny, Mohamed cc
    KAUST Department
    Computer Science
    Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division
    King Abdullah University of Science and Technology
    Date
    2021-02-20
    Permanent link to this record
    http://hdl.handle.net/10754/667728
    
    Metadata
    Show full item record
    Abstract
    In this paper, we aim to improve the data efficiency of image captioning. We propose VisualGPT, a data-efficient image captioning model that leverages the linguistic knowledge from a large pretrained language model (LM). A crucial challenge is to balance between the use of visual information in the image and prior linguistic knowledge acquired from pretraining.We designed a novel self-resurrecting encoder-decoder attention mechanism to quickly adapt the pretrained LM as the language decoder on a small amount of in-domain training data. The pro-posed self-resurrecting activation unit produces sparse activations but is not susceptible to zero gradients. When trained on 0.1%, 0.5% and 1% of MSCOCO and Conceptual Captions, the proposed model, VisualGPT, surpasses strong image captioning baselines. VisualGPT outperforms the best baseline model by up to 10.8% CIDEr on MS COCO and up to 5.4% CIDEr on Conceptual Captions.We also perform a series of ablation studies to quantify the utility of each system component. To the best of our knowledge, this is the first work that improves data efficiency of image captioning by utilizing LM pretrained on unimodal data. Our code is available at: https://github.com/Vision-CAIR/VisualGPT.
    Publisher
    arXiv
    arXiv
    2102.10407
    Additional Links
    https://arxiv.org/pdf/2102.10407.pdf
    Collections
    Preprints; Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division

    entitlement

     
    DSpace software copyright © 2002-2021  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.