Towards Detecting Red Palm Weevil Using Machine Learning and Fiber Optic Distributed Acoustic Sensing
Type
ArticleAuthors
Wang, Biwei
Mao, Yuan

Ashry, Islam

Al-Fehaid, Yousef
Al-Shawaf, Abdulmoneim
Ng, Tien Khee

Yu, Changyuan
Ooi, Boon S.

KAUST Department
Computer, Electrical and Mathematical Science and Engineering (CEMSE) DivisionElectrical and Computer Engineering Program
Photonics Laboratory
Physical Science and Engineering (PSE) Division
KAUST Grant Number
REI/1/4247-01-01Date
2021-02-25Submitted Date
2021-01-20Permanent link to this record
http://hdl.handle.net/10754/667692
Metadata
Show full item recordAbstract
Red palm weevil (RPW) is a detrimental pest, which has wiped out many palm tree farms worldwide. Early detection of RPW is challenging, especially in large-scale farms. Here, we introduce the combination of machine learning and fiber optic distributed acoustic sensing (DAS) techniques as a solution for the early detection of RPW in vast farms. Within the laboratory environment, we reconstructed the conditions of a farm that includes an infested tree with ∼12 day old weevil larvae and another healthy tree. Meanwhile, some noise sources are introduced, including wind and bird sounds around the trees. After training with the experimental time- and frequency-domain data provided by the fiber optic DAS system, a fully-connected artificial neural network (ANN) and a convolutional neural network (CNN) can efficiently recognize the healthy and infested trees with high classification accuracy values (99.9% by ANN with temporal data and 99.7% by CNN with spectral data, in reasonable noise conditions). This work paves the way for deploying the high efficiency and cost-effective fiber optic DAS to monitor RPW in open-air and large-scale farms containing thousands of trees.Citation
Wang, B., Mao, Y., Ashry, I., Al-Fehaid, Y., Al-Shawaf, A., Ng, T. K., … Ooi, B. S. (2021). Towards Detecting Red Palm Weevil Using Machine Learning and Fiber Optic Distributed Acoustic Sensing. Sensors, 21(5), 1592. doi:10.3390/s21051592Sponsors
This research was funded by KAUST-Research Translation Funding (REI/1/4247-01-01).Publisher
MDPI AGJournal
SensorsAdditional Links
https://www.mdpi.com/1424-8220/21/5/1592ae974a485f413a2113503eed53cd6c53
10.3390/s21051592
Scopus Count
Except where otherwise noted, this item's license is described as This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.