ORR/OER activity and zinc-air battery performance of various kinds of graphene-based air catalysts

The development of cheap and efficient oxygen reduction and evolution reaction catalysts are important, which not only push the electrochemical energy systems including water electrolyzers, metal-air batteries, and fuel cells nearer to their theoretical limits but also become the substitute for the expensive noble metal catalysts (Pt/C, IrO2 or RuO2 and Pt-Ru/C). In this review, the recently reported potential graphene-based air catalysts such as graphene with non-metals, non-noble metals, metal oxides, nitrides, sulfides, carbides, and other carbon composites are identified in-light-of-their high oxygen reduction reaction/oxygen evolution reaction activity and zinc-air battery performance for the development of high energy density metal-air batteries. Further, the recent progress on the zinc-air batteries including the strategies used to improve the high cycling-performance (stable even up-to 394 cycles), capacity (even up-to 873 mAh g−1), power density (even up-to 350 mW cm−2), and energy density (even up-to 904 W h kg−1) are reviewed. The scientific and engineering knowledge acquired on zinc-air batteries provide conceivable development for practical application in near future.

Jamesh, M.-I., Moni, P., Prakash, A. S., & Harb, M. (2021). ORR/OER activity and zinc-air battery performance of various kinds of graphene-based air catalysts. Materials Science for Energy Technologies, 4, 1–22. doi:10.1016/j.mset.2020.12.001

One of the authors (Dr. M.I.J) thanks to the Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India, for funding under National Post-Doctoral Fellowship scheme with the reference no. PDF/2017/000015. One of the authors, Dr. Prabu Moni grateful to the Department of Science and Technology (DST), New Delhi, India for awarding INSPIRE Faculty Award (DST/INSPIRE/04/2016/000530). One of the authors, Dr. MOUSSAB Harb thanks to the King Abdullah University of Science and Technology (KAUST).

Elsevier BV

Materials Science for Energy Technologies


Additional Links

Permanent link to this record