Show simple item record

dc.contributor.authorRuslan, Mohd Fuad Anwari Che
dc.contributor.authorYoun, Dong Joon
dc.contributor.authorAarons, Roshan
dc.contributor.authorSun, Yabin
dc.contributor.authorSun, Shuyu
dc.date.accessioned2021-02-23T06:06:56Z
dc.date.available2021-02-23T06:06:56Z
dc.date.issued2021-02-21
dc.date.submitted2020-12-29
dc.identifier.citationRuslan, M. F. A. C., Youn, D. J., Aarons, R., Sun, Y., & Sun, S. (2021). Numerical Analysis of a Continuous Vulcanization Line to Enhance CH4 Reduction in XLPE-Insulated Cables. Materials, 14(4), 1018. doi:10.3390/ma14041018
dc.identifier.issn1996-1944
dc.identifier.doi10.3390/ma14041018
dc.identifier.urihttp://hdl.handle.net/10754/667596
dc.description.abstractHerein, we apply a computational diffusion model based on Fick’s law to study the manner in which a cable production line and its operating conditions can be enhanced to effectively reduce the CH4 concentration in cables insulated with cross-linked polyethylene (XLPE). Thus, we quantitatively analyze the effect of the conductor temperature, curing tube temperature distribution, transition zone length, and online relaxation on CH4 generation and transport during the production of 132 kV cables with an insulation thickness of 16.3 mm. Results show that the conductor temperature, which is initially controlled by a preheater, and the curing tube temperature distribution considerably affect the CH4 concentration in the cable because of their direct impact on the insulation temperature. The simulation results show 2.7% less CH4 remaining in the cable when the preheater is set at 160 C compared with that when no preheater is used. To study the curing tube temperature distribution, we consider three distribution patterns across the curing tube: constant temperature and linear incremental and decremental temperature. The amount of CH4 remaining in the cable when the temperature was linearly increased from 300 to 400 C was 1.6% and 3.7% lower than in the cases with a constant temperature at 350 C and a linear temperature decrease from 400 to 300 C, respectively. In addition, simulations demonstrate that the amount of CH4 removal from the cable can be increased up to 9.7% by applying an elongated and insulated transition zone, which extends the residence time for CH4 removal and decelerates the decrease in cable temperature. Finally, simulations show that the addition of the online relaxation section can reduce the CH4 concentration in the cable because the high cable temperature in this section facilitates CH4 removal up to 2.2%, and this effect becomes greater at low production speeds.
dc.description.sponsorshipThis publication is based on a joint research project supported by The Dow Chemical Company. We gratefully acknowledge the support of Dow Chemical. In addition, we thank Jozef Van Dun from Dow Chemical Europe for his valuable suggestions and comments.
dc.publisherMDPI AG
dc.relation.urlhttps://www.mdpi.com/1996-1944/14/4/1018
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleNumerical Analysis of a Continuous Vulcanization Line to Enhance CH4 Reduction in XLPE-Insulated Cables
dc.typeArticle
dc.contributor.departmentComputational Transport Phenomena Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia.
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentEarth Science and Engineering Program
dc.identifier.journalMaterials
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDow Chemical Europe, 8810 Horgen, Switzerland.
dc.contributor.institutionDow Chemical (China) Investment Co., Ltd., Shanghai 201203, China.
dc.identifier.volume14
dc.identifier.issue4
dc.identifier.pages1018
kaust.personRuslan, Mohd Fuad Anwari Che
kaust.personYoun, Dong Joon
kaust.personSun, Shuyu
dc.date.accepted2021-02-10
refterms.dateFOA2021-02-23T06:11:16Z


Files in this item

Thumbnail
Name:
materials-14-01018.pdf
Size:
3.178Mb
Format:
PDF
Description:
Publisher's version

This item appears in the following Collection(s)

Show simple item record

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Except where otherwise noted, this item's license is described as This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.