Zinc Oxide Quantum Dots Embedded Porous Carbon Nanosheets for High-Capacity and Ultrastable Lithium-Ion Battery Anodes
dc.contributor.author | Yang, Jian | |
dc.contributor.author | Feng, Tingting | |
dc.contributor.author | Zhou, Haiping | |
dc.contributor.author | Hu, Cerui | |
dc.contributor.author | Guo, Yuping | |
dc.contributor.author | Chen, Cheng | |
dc.contributor.author | Chen, Zhi | |
dc.contributor.author | Liu, Jiahao | |
dc.contributor.author | Huang, Gang | |
dc.contributor.author | Wu, Mengqiang | |
dc.date.accessioned | 2021-02-22T06:54:12Z | |
dc.date.available | 2021-02-22T06:54:12Z | |
dc.date.issued | 2020-09-16 | |
dc.date.submitted | 2020-04-01 | |
dc.identifier.citation | Yang, J., Feng, T., Zhou, H., Hu, C., Guo, Y., Chen, C., … Wu, M. (2020). Zinc Oxide Quantum Dots Embedded Porous Carbon Nanosheets for High-Capacity and Ultrastable Lithium-Ion Battery Anodes. Cell Reports Physical Science, 1(9), 100186. doi:10.1016/j.xcrp.2020.100186 | |
dc.identifier.issn | 2666-3864 | |
dc.identifier.doi | 10.1016/j.xcrp.2020.100186 | |
dc.identifier.uri | http://hdl.handle.net/10754/667557 | |
dc.description.abstract | Carbon materials are widely used in lithium-ion batteries (LIBs) due to their high performance, safety, and reliability, along with low cost and easy availability. However, the low lithium storage capability of bare carbon materials limits the further improvement of the capacity of LIBs. Here, we report a facile self-poring strategy for the synthesis of trace amounts of ZnO quantum dots (QDs) (∼5 nm) embedded in highly porous carbon nanosheets by using the metal centers of a Zn-based metal-organic ligand structure as a pore-creating agent. Benefiting from the synergistic functions of nanostructuring, heterocomponent doping, and QDs effects, the as-prepared materials deliver superior lithium storage properties in comparison with the existing carbon-based materials—2,300 mAh g−1 at 0.2 A g−1, ∼600 mAh g−1 at 10 A g−1, and ∼700 mAh g−1 after 3,000 cycles at 5 A g−1—and are promising candidates for next-generation high-capacity LIB electrodes. | |
dc.description.sponsorship | This work was supported by the Sichuan Science and Technology Program (18ZDYF1521, 2017-XT00-00001-GX, 2019YFH0002, and 2019YFG0222). J.Y. C.H. Y.G. J.L. C.C. and Z.C. prepared the samples and conducted the electrochemical measurements. J.Y. T.F. H.Z. M.W. and G.H. wrote the manuscript. All of the authors discussed the results and reviewed the manuscript. The authors declare no competing interests. | |
dc.publisher | Elsevier BV | |
dc.relation.url | https://linkinghub.elsevier.com/retrieve/pii/S2666386420301971 | |
dc.rights | This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | ZnO quantum dots | |
dc.subject | carbon nanosheets | |
dc.subject | high specific surface area | |
dc.subject | large pore volume | |
dc.subject | Li-ion batteries | |
dc.subject | anode | |
dc.title | Zinc Oxide Quantum Dots Embedded Porous Carbon Nanosheets for High-Capacity and Ultrastable Lithium-Ion Battery Anodes | |
dc.type | Article | |
dc.contributor.department | Physical Science and Engineering (PSE) Division | |
dc.identifier.journal | Cell Reports Physical Science | |
dc.eprint.version | Publisher's Version/PDF | |
dc.contributor.institution | School of Materials and Energy, University of Electronic Science and Technology of China, 2006 Xiyuan Avenue, Chengdu 611731, China | |
dc.identifier.volume | 1 | |
dc.identifier.issue | 9 | |
dc.identifier.pages | 100186 | |
kaust.person | Huang, Gang | |
dc.date.accepted | 2020-08-06 | |
dc.identifier.eid | 2-s2.0-85100603541 | |
refterms.dateFOA | 2021-02-22T06:54:49Z |
Files in this item
This item appears in the following Collection(s)
-
Articles
-
Physical Science and Engineering (PSE) Division
For more information visit: http://pse.kaust.edu.sa/