• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Numerical investigation of pressure effects on soot formation in laminar coflow ethylene/air diffusion flames

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Revised Manuscript clean and final version.pdf
    Size:
    1.767Mb
    Format:
    PDF
    Description:
    Accepted manuscript
    Download
    Type
    Article
    Authors
    Guo, Junjun cc
    Tang, Yihao
    Raman, Venkat
    Im, Hong G. cc
    KAUST Department
    Clean Combustion Research Center
    Computational Reacting Flow Laboratory (CRFL)
    Mechanical Engineering Program
    Physical Science and Engineering (PSE) Division
    Date
    2021-02-21
    Online Publication Date
    2021-02-21
    Print Publication Date
    2021-05
    Embargo End Date
    2023-02-21
    Submitted Date
    2020-10-13
    Permanent link to this record
    http://hdl.handle.net/10754/667541
    
    Metadata
    Show full item record
    Abstract
    This study aims to provide fundamental understandings of the pressure effects on the soot formation and compare the performances of different soot aerosol models. Numerical simulations are performed in laminar coflow diffusion flames at pressures ranging from 1 to 16 bar. Two soot aerosol models are considered: the acetylene-based semi-empirical (SE) model and polycyclic aromatic hydrocarbons (PAH) based hybrid method of moment (HMOM). To study the effect of large-sized PAH species, a detailed reaction mechanism is used with PAH pathways up to coronene. Results show that the SE model provides good predictions of pressure scaling of peak soot mass with a deviation of 7%, while HMOM obtains better soot predictions on the flame centerline. Due to the shifting of PAH position towards the burner with increasing pressure, the nascent soot is formed earlier. The increase in the particle residence time is found to be an additional factor that further promotes the increased soot formation with pressure, apart from the increase in density, temperature, and PAH concentration. The residence time at 8 bar case is 2.5 times and 3.0 times longer than those at 1 bar case on the flame centerline and flame wings, respectively. Moreover, the pressure effects on the PAH contribution to the nucleation process are studied. Although small-sized PAH species (A2 and A2R5) dominate the nucleation process, the contribution of large-sized PAH species (larger than A4) increases from 5% to 20% of the total on the flame wings, when the pressure increases from 1 bar to 8 bar.
    Citation
    Guo, J., Tang, Y., Raman, V., & Im, H. G. (2021). Numerical investigation of pressure effects on soot formation in laminar coflow ethylene/air diffusion flames. Fuel, 292, 120176. doi:10.1016/j.fuel.2021.120176
    Sponsors
    The work was sponsored by the King Abdullah University of Science and Technology (KAUST) and computational resources were provided by the KAUST Supercomputing Laboratory (KSL).
    Publisher
    Elsevier BV
    Journal
    Fuel
    DOI
    10.1016/j.fuel.2021.120176
    Additional Links
    https://linkinghub.elsevier.com/retrieve/pii/S0016236121000521
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.fuel.2021.120176
    Scopus Count
    Collections
    Articles; Physical Science and Engineering (PSE) Division; Mechanical Engineering Program; Clean Combustion Research Center

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.