Show simple item record

dc.contributor.authorTang, Ming-Chun
dc.contributor.authorDang, Hoang X.
dc.contributor.authorLee, Sehyun
dc.contributor.authorBarrit, Dounya
dc.contributor.authorMunir, Rahim
dc.contributor.authorWang, Kai
dc.contributor.authorLi, Ruipeng
dc.contributor.authorSmilgies, Detlef-M.
dc.contributor.authorDe Wolf, Stefaan
dc.contributor.authorKim, Dong-Yu
dc.contributor.authorAnthopoulos, Thomas D.
dc.contributor.authorAmassian, Aram
dc.date.accessioned2021-02-21T11:40:54Z
dc.date.available2021-02-21T11:40:54Z
dc.date.issued2021-03-07
dc.date.submitted2020-11-14
dc.identifier.citationTang, M.-C., Dang, H. X., Lee, S., Barrit, D., Munir, R., Wang, K., … Amassian, A. (2021). Wide and Tunable Bandgap MAPbBr 3-x Cl x Hybrid Perovskites with Enhanced Phase Stability: In Situ Investigation and Photovoltaic Devices. Solar RRL. doi:10.1002/solr.202000718
dc.identifier.issn2367-198X
dc.identifier.issn2367-198X
dc.identifier.doi10.1002/solr.202000718
dc.identifier.urihttp://hdl.handle.net/10754/667525
dc.description.abstractOur current understanding of the crystallization, morphology evolution and phase stability of wide bandgap hybrid perovskite thin films is very limited, as much of the community's focus has been on lower bandgap systems. Here, we investigate the crystallization behavior and film formation of wide and tunable bandgap MAPbBr3-xClx films and contrast its formation and phase stability to the classical MAPbI3-xBrx cases. We utilize a multi-probe in situ characterization approach consisting of synchrotron-based grazing incidence wide-angle X-ray scattering and lab-based time-resolved UV-Vis absorbance measurements to show that all wide-bandgap perovskite compositions of MAPbBr3-xClx studied (0 < × < 3) crystallized the same way: the perovskite phase forms directly from the colloidal sol state, and forms a solid film in the cubic structure. This results in significantly improved phase stability of these compounds compared to MAPbI3-xBrx systems. The phase transformation pathway is direct and excludes solvated phases, in contrast to MAPbI3. The films benefit from antisolvent dripping to overcome the formation of discontinuous layers and enable device integration. Pin-hole-free MAPbBr3-xClx hybrid perovskite thin films with tunable bandgap are thus integrated into working single-junction solar cell devices and achieve tunable open-circuit voltage as high as 1.6 V.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/10.1002/solr.202000718
dc.rightsArchived with thanks to Solar RRL
dc.titleWide and Tunable Bandgap MAPbBr3-xClx Hybrid Perovskites with Enhanced Phase Stability: In Situ Investigation and Photovoltaic Devices
dc.typeArticle
dc.contributor.departmentAcademic Affairs
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentMaterial Science and Engineering
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentOffice of the VP
dc.contributor.departmentOrganic Electronics and Photovoltaics Group
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.identifier.journalSolar RRL
dc.rights.embargodate2022-02-17
dc.eprint.versionPost-print
dc.contributor.institutionDepartment of Materials Science and Engineering North Carolina State University Raleigh NC 27695 USA
dc.contributor.institutionSchool of Materials Science and Engineering Gwangju Institute of Science and Technology (GIST) Gwangju South Korea
dc.contributor.institutionBrookhaven National Laboratory (BNL) Upton NY 11973 USA
dc.contributor.institutionCornell High Energy Synchrotron Source (CHESS) Cornell University Ithaca NY 14850 USA
kaust.personTang, Ming-Chun
kaust.personBarrit, Dounya
kaust.personMunir, Rahim
kaust.personWang, Kai
kaust.personDe Wolf, Stefaan
kaust.personAnthopoulos, Thomas D.
kaust.personAmassian, Aram
dc.date.accepted2021-02-10
refterms.dateFOA2021-02-21T11:42:20Z
dc.date.published-online2021-03-07
dc.date.published-print2021-04


Files in this item

Thumbnail
Name:
solr.202000718.pdf
Size:
1.416Mb
Format:
PDF
Description:
Accepted Article
Embargo End Date:
2022-02-17

This item appears in the following Collection(s)

Show simple item record