Fracture Behavior Transition in (001) Cracked Metal Nanoplates Induced by the Surface Effect
Type
ArticleAuthors
Kim, Hokun
Ho, Duc Tam

Kim, Sung Youb

KAUST Department
Physical Science and Engineering (PSE) DivisionDate
2021-02-16Embargo End Date
2022-02-16Submitted Date
2020-12-19Permanent link to this record
http://hdl.handle.net/10754/667471
Metadata
Show full item recordAbstract
In this study, we show that the fracture mode of (001) cracked metal nanoplates is strongly dependent on the size through molecular dynamics simulations. Cracked nanoplates with smaller sizes exhibit an elastic instability-dominant fracture followed by a ductile behavior, whereas larger cracked nanoplates exhibit a brittle fracture. A brittle fracture is caused by an embedded crack, whereas the elastic instability-dominant fracture is due to a failure of the nanoplate by elastic instability, which is influenced by the surface effect. We provide numerical and theoretical evidence to show that the transition in the fracture behavior of a cracked metal nanoplate is due to the competition between the crack and the free surfaces.Citation
Kim, H., Ho, D. T., & Kim, S. Y. (2021). Fracture Behavior Transition in (001) Cracked Metal Nanoplates Induced by the Surface Effect. The Journal of Physical Chemistry C. doi:10.1021/acs.jpcc.0c11302Sponsors
We gratefully acknowledge the support from the Mid-Career Researcher Support Program (Grant No. 2019R1A2C2011312) of the National Research Foundation (NRF) of Korea and from the Meta-Structure Based Seismic Shielding Research Fund (Project No. 1.200043.01) of UNIST. We also acknowledge with gratitude the supercomputing resources of the UNIST supercomputing Center.Publisher
American Chemical Society (ACS)Additional Links
https://pubs.acs.org/doi/10.1021/acs.jpcc.0c11302ae974a485f413a2113503eed53cd6c53
10.1021/acs.jpcc.0c11302