Show simple item record

dc.contributor.authorRoss, A.
dc.contributor.authorLebrun, R.
dc.contributor.authorBaldrati, L.
dc.contributor.authorKamra, Akashdeep
dc.contributor.authorGomonay, Olena
dc.contributor.authorDing, Shilei
dc.contributor.authorSchreiber, Felix
dc.contributor.authorBackes, D.
dc.contributor.authorMaccherozzi, Francesco
dc.contributor.authorGrave, Daniel A.
dc.contributor.authorRothschild, Avner
dc.contributor.authorSinova, Jairo
dc.contributor.authorKläui, Mathias
dc.date.accessioned2021-02-16T12:56:52Z
dc.date.available2021-02-16T12:56:52Z
dc.date.issued2020-12-14
dc.identifier.citationRoss, A., Lebrun, R., Baldrati, L., Kamra, A., Gomonay, O., Ding, S., … Kläui, M. (2020). An insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit. Applied Physics Letters, 117(24), 242405. doi:10.1063/5.0032940
dc.identifier.issn0003-6951
dc.identifier.issn1077-3118
dc.identifier.doi10.1063/5.0032940
dc.identifier.urihttp://hdl.handle.net/10754/667461
dc.description.abstractWe report room-temperature long-distance spin transport of magnons in antiferromagnetic thin-film hematite doped with Zn. The additional dopants significantly alter the magnetic anisotropies, resulting in a complex equilibrium spin structure that is capable of efficiently transporting spin angular momentum at room temperature without the need for a well-defined, pure easy-axis or easy-plane anisotropy. We find intrinsic magnon spin-diffusion lengths of up to 1.5 μm, and magnetic domain governed decay lengths of 175 nm for the low-frequency magnons, through electrical transport measurements demonstrating that the introduction of nonmagnetic dopants does not strongly reduce the transport length scale, showing that the magnetic damping of hematite is not significantly increased. We observe a complex field dependence of the nonlocal signal independent of the magnetic state visible, in the local magnetoresistance and direct magnetic imaging of the antiferromagnetic domain structure. We explain our results in terms of a varying and applied field-dependent ellipticity of the magnon modes reaching the detector electrode allowing us to tune the spin transport.
dc.description.sponsorshipAll authors from Mainz also acknowledge support from MaHoJeRo (DAAD Spintronics network, Project Nos. 57334897 and 57524834), SPINþX (DFG SFB TRR 173, projects A01, A03, B02, and B12), DFG (No. 423441604), and KAUST (No. OSR-2019-CRG8-4048.2).
dc.publisherAIP Publishing
dc.relation.urlhttp://aip.scitation.org/doi/10.1063/5.0032940
dc.rightsThis article may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. The following article appeared in Applied Physics Letters and may be found at http://doi.org/10.1063/5.0032940.
dc.titleAn insulating doped antiferromagnet with low magnetic symmetry as a room temperature spin conduit
dc.typeArticle
dc.identifier.journalApplied Physics Letters
dc.rights.embargodate2021-12-14
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionInstitute of Physics, Johannes Gutenberg-University Mainz, 55099 Mainz, Germany
dc.contributor.institutionGraduate School of Excellence Materials Science in Mainz, Staudingerweg 7, 55128 Mainz, Germany
dc.contributor.institutionUnité Mixte de Physique CNRS, Thales, University Paris-Sud, Université Paris-Saclay, Palaiseau 91767, France
dc.contributor.institutionCenter for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
dc.contributor.institutionState Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
dc.contributor.institutionDiamond Light Source, Didcot, Oxfordshire OX11 0DE, United Kingdom
dc.contributor.institutionDepartment of Materials Engineering and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
dc.contributor.institutionDepartment of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel
dc.contributor.institutionInstitute of Physics ASCR, v.v.i., Cukrovarnicka 10, 162 53 Praha 6, Czech Republic
dc.identifier.volume117
dc.identifier.issue24
dc.identifier.pages242405
dc.identifier.arxivid2011.09755
kaust.grant.numberOSR-2019-CRG8-4048.2
kaust.acknowledged.supportUnitOSR


This item appears in the following Collection(s)

Show simple item record