• Login
    View Item 
    •   Home
    • Research
    • Articles
    • View Item
    •   Home
    • Research
    • Articles
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    Complex structures arising from the self-assembly of a simple organic salt

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Montis, Riccardo cc
    Fusaro, Luca cc
    Falqui, Andrea cc
    Hursthouse, Michael B.
    Tumanov, Nikolay cc
    Coles, Simon J. cc
    Threlfall, Terry L.
    Horton, Peter N.
    Sougrat, Rachid
    Lafontaine, Anaïs
    Coquerel, Gérard
    Rae, A. David
    KAUST Department
    Biological and Environmental Science and Engineering (BESE) Division
    Bioscience Program
    Electron Microscopy
    Date
    2021-02-10
    Online Publication Date
    2021-02-10
    Print Publication Date
    2021-02-11
    Embargo End Date
    2021-08-10
    Submitted Date
    2019-03-19
    Permanent link to this record
    http://hdl.handle.net/10754/667405
    
    Metadata
    Show full item record
    Abstract
    Molecular self-assembly is the spontaneous association of simple molecules into larger and ordered structures<sup>1</sup>. It is the basis of several natural processes, such as the formation of colloids, crystals, proteins, viruses and double-helical DNA<sup>2</sup>. Molecular self-assembly has inspired strategies for the rational design of materials with specific chemical and physical properties<sup>3</sup>, and is one of the most important concepts in supramolecular chemistry. Although molecular self-assembly has been extensively investigated, understanding the rules governing this phenomenon remains challenging. Here we report on a simple hydrochloride salt of fampridine that crystallizes as four different structures, two of which adopt unusual self-assemblies consisting of polyhedral clusters of chloride and pyridinium ions. These two structures represent Frank-Kasper (FK) phases of a small and rigid organic molecule. Although discovered in metal alloys<sup>4,5</sup> more than 60 years ago, FK phases have recently been observed in several classes of supramolecular soft matter<sup>6-11</sup> and in gold nanocrystal superlattices<sup>12</sup> and remain the object of recent discoveries<sup>13</sup>. In these systems, atoms or spherical assemblies of molecules are packed to form polyhedra with coordination numbers 12, 14, 15 or 16. The two FK structures reported here crystallize from a dense liquid phase and show a complexity that is generally not observed in small rigid organic molecules. Investigation of the precursor dense liquid phase by cryogenic electron microscopy reveals the presence of spherical aggregates with sizes ranging between 1.5 and 4.6 nanometres. These structures, together with the experimental procedure used for their preparation, invite interesting speculation about their formation and open different perspectives for the design of organic crystalline materials.
    Citation
    Montis, R., Fusaro, L., Falqui, A., Hursthouse, M. B., Tumanov, N., Coles, S. J., … Rae, A. D. (2021). Complex structures arising from the self-assembly of a simple organic salt. Nature, 590(7845), 275–278. doi:10.1038/s41586-021-03194-y
    Sponsors
    We thank the UK Engineering and Physical Sciences Research Council for financial support for single-crystal diffraction facilities through funding of the UK National Crystallography Service. R.M. thanks R. Davey (The University of Manchester) for comments and discussions. We thank M. Sanselme (Université de Rouen Normandie) for help with in situ X-ray diffraction measurements. We thank the technological platform “Physico-Chemical Characterization” – PC2 (University of Namur) for providing resources used for this research.
    Publisher
    Springer Nature
    Journal
    Nature
    DOI
    10.1038/s41586-021-03194-y
    PubMed ID
    33568820
    Additional Links
    http://www.nature.com/articles/s41586-021-03194-y
    Relations
    Is Supplemented By:
    • [Dataset]
      Coles, S., Montis, R., Horton, P., & Hursthouse, M. (2019). Single crystal diffraction raw data for Fampridine hydrochloride Phase 4 [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.2593677. DOI: 10.5281/zenodo.2593677 Handle: 10754/667705
    • [Dataset]
      Coles, S., Montis, R., Horton, P., & Hursthouse, M. (2019). Single crystal diffraction raw data for Fampridine hydrochloride Phase 3 [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.2593670. DOI: 10.5281/zenodo.2593670 Handle: 10754/667706
    • [Dataset]
      Coles, S. I., Montis, R., Horton, P., & Hursthouse, M. (2019). Single crystal diffraction raw data for Fampridine hydrochloride Phase 2 [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.2585776. DOI: 10.5281/zenodo.2585776 Handle: 10754/667708
    • [Dataset]
      Coles, S., Montis, R., Horton, P., & Hursthouse, M. (2019). Single crystal diffraction raw data for Fampridine hydrochloride Phase 1 [Data set]. Zenodo. https://doi.org/10.5281/ZENODO.2595089. DOI: 10.5281/zenodo.2595089 Handle: 10754/667761
    • [Dataset]
      Montis, Riccardo, Fusaro, Luca, Falqui, Andrea, Hursthouse, Michael B., Tumanov, Nikolay, Coles, Simon J., Threlfall, Terry L., Horton, Peter N., Sougrat, Rachid, Lafontaine, Anaïs, Coquerel, Gérard, & Rae, A. David. (2021). CCDC 1540141: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CCDC.CSD.CC1NPMZY. DOI: 10.5517/ccdc.csd.cc1npmzy Handle: 10754/669192
    • [Dataset]
      Montis, Riccardo, Fusaro, Luca, Falqui, Andrea, Hursthouse, Michael B., Tumanov, Nikolay, Coles, Simon J., Threlfall, Terry L., Horton, Peter N., Sougrat, Rachid, Lafontaine, Anaïs, Coquerel, Gérard, & Rae, A. David. (2021). CCDC 1540139: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CCDC.CSD.CC1NPMXW. DOI: 10.5517/ccdc.csd.cc1npmxw Handle: 10754/669193
    • [Dataset]
      Montis, Riccardo, Fusaro, Luca, Falqui, Andrea, Hursthouse, Michael B., Tumanov, Nikolay, Coles, Simon J., Threlfall, Terry L., Horton, Peter N., Sougrat, Rachid, Lafontaine, Anaïs, Coquerel, Gérard, & Rae, A. David. (2021). CCDC 1540140: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CCDC.CSD.CC1NPMYX. DOI: 10.5517/ccdc.csd.cc1npmyx Handle: 10754/669194
    • [Dataset]
      Montis, Riccardo, Fusaro, Luca, Falqui, Andrea, Hursthouse, Michael B., Tumanov, Nikolay, Coles, Simon J., Threlfall, Terry L., Horton, Peter N., Sougrat, Rachid, Lafontaine, Anaïs, Coquerel, Gérard, & Rae, A. David. (2021). CCDC 1897427: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CCDC.CSD.CC21PFBJ. DOI: 10.5517/ccdc.csd.cc21pfbj Handle: 10754/669196
    • [Dataset]
      Montis, Riccardo, Fusaro, Luca, Falqui, Andrea, Hursthouse, Michael B., Tumanov, Nikolay, Coles, Simon J., Threlfall, Terry L., Horton, Peter N., Sougrat, Rachid, Lafontaine, Anaïs, Coquerel, Gérard, & Rae, A. David. (2021). CCDC 1897428: Experimental Crystal Structure Determination [Data set]. Cambridge Crystallographic Data Centre. https://doi.org/10.5517/CCDC.CSD.CC21PFCK. DOI: 10.5517/ccdc.csd.cc21pfck Handle: 10754/669197
    ae974a485f413a2113503eed53cd6c53
    10.1038/s41586-021-03194-y
    Scopus Count
    Collections
    Articles; Biological and Environmental Science and Engineering (BESE) Division; Bioscience Program

    entitlement

    Related articles

    • Evidence for a C14 Frank-Kasper Phase in One-Size Gold Nanoparticle Superlattices.
    • Authors: Hajiw S, Pansu B, Sadoc JF
    • Issue date: 2015 Aug 25
    • Coordination-Driven Syntheses of Compact Supramolecular Metallacycles toward Extended Metallo-organic Stacked Supramolecular Assemblies.
    • Authors: Lescop C
    • Issue date: 2017 Apr 18
    • Identification of a Frank-Kasper Z phase from shape amphiphile self-assembly.
    • Authors: Su Z, Hsu CH, Gong Z, Feng X, Huang J, Zhang R, Wang Y, Mao J, Wesdemiotis C, Li T, Seifert S, Zhang W, Aida T, Huang M, Cheng SZD
    • Issue date: 2019 Oct
    • Geometry induced sequence of nanoscale Frank-Kasper and quasicrystal mesophases in giant surfactants.
    • Authors: Yue K, Huang M, Marson RL, He J, Huang J, Zhou Z, Wang J, Liu C, Yan X, Wu K, Guo Z, Liu H, Zhang W, Ni P, Wesdemiotis C, Zhang WB, Glotzer SC, Cheng SZ
    • Issue date: 2016 Dec 13
    • Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions.
    • Authors: Chen LJ, Yang HB
    • Issue date: 2018 Nov 20
    DSpace software copyright © 2002-2022  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.