Show simple item record

dc.contributor.authorKatsiev, Khabiboulakh
dc.contributor.authorSolovyeva, Vera
dc.contributor.authorMahfouz, Remi
dc.contributor.authorAbou-Hamad, Edy
dc.contributor.authorPeng, Wei
dc.contributor.authorIdriss, Hicham
dc.contributor.authorKirmani, Ahmad R.
dc.date.accessioned2021-02-10T11:15:47Z
dc.date.available2021-02-10T11:15:47Z
dc.date.issued2021-02-03
dc.date.submitted2019-09-09
dc.identifier.citationKatsiev, K., Solovyeva, V., Mahfouz, R., Abou-Hamad, E., Peng, W., Idriss, H., & Kirmani, A. R. (2021). Fresh insights into detonation nanodiamond aggregation: An X-ray photoelectron spectroscopy, thermogravimetric analysis, and nuclear magnetic resonance study. Engineering Reports. doi:10.1002/eng2.12375
dc.identifier.issn2577-8196
dc.identifier.issn2577-8196
dc.identifier.doi10.1002/eng2.12375
dc.identifier.urihttp://hdl.handle.net/10754/667331
dc.description.abstractDetonation nanodiamonds (DNDs) are known to be produced in aggregated clusters of a few nanometer-sized primary crystalline particles embedded in an amorphous carbon matrix exhibiting high degree of polydispersity. A commonly accepted mechanism behind DND aggregation is the bridging of primary particles via oxygen containing functionalities. Here, we provide definitive spectroscopic evidence in favor of this working mechanism by carrying out systematic chemical compositional analysis on monodispersed DND aggregates of various sizes. Oxygen content is found to increase proportionally with the aggregate size confirming the role of oxygen containing functionalities as a cross-linker. Solid-state nuclear magnetic resonance data confirms these linkers to be of ether (COC) nature. Our results imply that oxygen content in DNDs can be independently tuned by varying the aggregate size, a knowledge which might benefit other applications, in addition. Next, we use this understanding to engineer the DND surfaces via an acid hydrolysis step to strip off these oxygen functionalities leading to size reduction of ca. 150 nm as-received DND aggregates to ca. 40 nm with >90% yields, without resorting to any other pre- or post-hydrolysis treatment such as surface functionalization or milling.
dc.description.sponsorshipThe research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST). K.K., R. M., and A.R.K. would like to thank Prof. Osman M. Bakr of KAUST Catalysis Center (KCC), KAUST for his continuous support and encouragement. The work of V.S. was supported by the Russian Science Foundation grant 18-13-00337.
dc.publisherWiley
dc.relation.urlhttps://onlinelibrary.wiley.com/doi/10.1002/eng2.12375
dc.rightsThis is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.titleFresh insights into detonation nanodiamond aggregation: An X-ray photoelectron spectroscopy, thermogravimetric analysis, and nuclear magnetic resonance study
dc.typeArticle
dc.contributor.departmentKAUST Solar Center (KSC)
dc.contributor.departmentPhysical Science and Engineering (PSE) Division
dc.contributor.departmentKing Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
dc.contributor.departmentMaterial Science and Engineering Program
dc.contributor.departmentSABIC Corporate Research and Innovation Center King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
dc.identifier.journalEngineering Reports
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionDepartment of Chemistry Lomonosov Moscow State University Moscow Russia
kaust.personKatsiev, Khabiboulakh
kaust.personMahfouz, Remi
kaust.personAbou-Hamad, Edy
kaust.personPeng, Wei
kaust.personIdriss, Hicham
kaust.personKirmani, Ahmad R.
dc.date.accepted2021-01-20
refterms.dateFOA2021-02-10T11:17:00Z
kaust.acknowledged.supportUnitKAUST Catalysis Center


Files in this item

Thumbnail
Name:
eng2.12375.pdf
Size:
789.2Kb
Format:
PDF
Description:
Published version

This item appears in the following Collection(s)

Show simple item record

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Except where otherwise noted, this item's license is described as This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.