Show simple item record

dc.contributor.authorJorgensen, Kelsey F.
dc.contributor.authorBonef, Bastien
dc.contributor.authorSpeck, James S.
dc.date.accessioned2021-02-10T06:24:50Z
dc.date.available2021-02-10T06:24:50Z
dc.date.issued2020-09
dc.identifier.citationJorgensen, K. F., Bonef, B., & Speck, J. S. (2020). High nitrogen flux plasma-assisted molecular beam epitaxy growth of InxGa1-xN films. Journal of Crystal Growth, 546, 125738. doi:10.1016/j.jcrysgro.2020.125738
dc.identifier.issn0022-0248
dc.identifier.doi10.1016/j.jcrysgro.2020.125738
dc.identifier.urihttp://hdl.handle.net/10754/667306
dc.description.abstractGrowth of efficient III-N based light emitting devices by plasma assisted molecular beam epitaxy has been elusive, even though the technique has attractive advantages in comparison to metal organic chemical vapor deposition. Modern high-flux radio frequency plasma systems could remedy this issue by enabling growth of InxGa1-xN at higher temperatures than previously possible, likely improving the material quality. In this work, active nitrogen fluxes of up to 3.5 μm/h GaN-equivalent growth rate were employed to grow InxGa1-xN alloys. InxGa1-xN growth rates of 1.3 μm/h were demonstrated at growth temperatures of 550 °C and 600 °C with maximum film compositions of In0.25Ga0.75N and In0.21Ga0.79N, respectively. A composition of In0.05Ga0.95N was observed in a film grown at 700 °C with smooth step-terrace morphology.
dc.description.sponsorshipThis work was supported in part by the KACST-KAUST-UCSB Solid State Lighting Program, the Solid State Lighting and Energy Electronics Center (SSLEEC) at UCSB, the Simons Foundation (601952, JS), and (NSF) RAISE program (Grant No. A007231601, JS).
dc.publisherElsevier BV
dc.relation.urlhttps://linkinghub.elsevier.com/retrieve/pii/S002202482030261X
dc.titleHigh nitrogen flux plasma-assisted molecular beam epitaxy growth of InxGa1-xN films
dc.typeArticle
dc.identifier.journalJournal of Crystal Growth
dc.eprint.versionPost-print
dc.contributor.institutionMaterials Department, University of California, Santa Barbara, CA 93106, United States
dc.identifier.volume546
dc.identifier.pages125738
dc.identifier.eid2-s2.0-85086455476


This item appears in the following Collection(s)

Show simple item record