High nitrogen flux plasma-assisted molecular beam epitaxy growth of InxGa1-xN films
Type
ArticleDate
2020-09Permanent link to this record
http://hdl.handle.net/10754/667306
Metadata
Show full item recordAbstract
Growth of efficient III-N based light emitting devices by plasma assisted molecular beam epitaxy has been elusive, even though the technique has attractive advantages in comparison to metal organic chemical vapor deposition. Modern high-flux radio frequency plasma systems could remedy this issue by enabling growth of InxGa1-xN at higher temperatures than previously possible, likely improving the material quality. In this work, active nitrogen fluxes of up to 3.5 μm/h GaN-equivalent growth rate were employed to grow InxGa1-xN alloys. InxGa1-xN growth rates of 1.3 μm/h were demonstrated at growth temperatures of 550 °C and 600 °C with maximum film compositions of In0.25Ga0.75N and In0.21Ga0.79N, respectively. A composition of In0.05Ga0.95N was observed in a film grown at 700 °C with smooth step-terrace morphology.Citation
Jorgensen, K. F., Bonef, B., & Speck, J. S. (2020). High nitrogen flux plasma-assisted molecular beam epitaxy growth of InxGa1-xN films. Journal of Crystal Growth, 546, 125738. doi:10.1016/j.jcrysgro.2020.125738Sponsors
This work was supported in part by the KACST-KAUST-UCSB Solid State Lighting Program, the Solid State Lighting and Energy Electronics Center (SSLEEC) at UCSB, the Simons Foundation (601952, JS), and (NSF) RAISE program (Grant No. A007231601, JS).Publisher
Elsevier BVJournal
Journal of Crystal GrowthAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S002202482030261Xae974a485f413a2113503eed53cd6c53
10.1016/j.jcrysgro.2020.125738