Show simple item record

dc.contributor.authorUpadhyaya, Lakshmeesha
dc.contributor.authorSemsarilar, Mona
dc.contributor.authorQuemener, Damien
dc.contributor.authorFernández-Pacheco, Rodrigo
dc.contributor.authorMartinez, Gema
dc.contributor.authorCoelhoso, Isabel M.
dc.contributor.authorNunes, Suzana Pereira
dc.contributor.authorCrespo, João G.
dc.contributor.authorMallada, Reyes
dc.contributor.authorPortugal, Carla A. M.
dc.date.accessioned2021-02-10T06:12:39Z
dc.date.available2021-02-10T06:12:39Z
dc.date.issued2021-02-02
dc.date.submitted2020-12-30
dc.identifier.citationUpadhyaya, L., Semsarilar, M., Quemener, D., Fernández-Pacheco, R., Martinez, G., Coelhoso, I. M., … Portugal, C. A. M. (2021). Block Copolymer-Based Magnetic Mixed Matrix Membranes—Effect of Magnetic Field on Protein Permeation and Membrane Fouling. Membranes, 11(2), 105. doi:10.3390/membranes11020105
dc.identifier.issn2077-0375
dc.identifier.pmid33540798
dc.identifier.doi10.3390/membranes11020105
dc.identifier.urihttp://hdl.handle.net/10754/667300
dc.description.abstractIn this study, we report the impact of the magnetic field on protein permeability through magnetic-responsive, block copolymer, nanocomposite membranes with hydrophilic and hydrophobic characters. The hydrophilic nanocomposite membranes were composed of spherical polymeric nanoparticles (NPs) synthesized through polymerization-induced self-assembly (PISA) with iron oxide NPs coated with quaternized poly(2-dimethylamino)ethyl methacrylate. The hydrophobic nanocomposite membranes were prepared via nonsolvent-induced phase separation (NIPS) containing poly (methacrylic acid) and meso-2,3-dimercaptosuccinic acid-coated superparamagnetic nanoparticles (SPNPs). The permeation experiments were carried out using bovine serum albumin (BSA) as the model solute, in the absence of the magnetic field and under permanent and cyclic magnetic field conditions OFF/ON (strategy 1) and ON/OFF (strategy 2). It was observed that the magnetic field led to a lower reduction in the permeate fluxes of magnetic-responsive membranes during BSA permeation, regardless of the magnetic field strategy used, than that obtained in the absence of the magnetic field. Nevertheless, a comparative analysis of the effect caused by the two cyclic magnetic field strategies showed that strategy 2 allowed for a lower reduction of the original permeate fluxes during BSA permeation and higher protein sieving coefficients. Overall, these novel magneto-responsive block copolymer nanocomposite membranes proved to be competent in mitigating biofouling phenomena in bioseparation processes.
dc.description.sponsorshipLakshmeesha Upadhyaya acknowledges the doctorate completed at the Institut Européen des Membranes and carried out in three universities: Université de Montpellier (France), Universidad de Zaragoza (Spain) and Universidade Nova de Lisboa (Portugal) and supported by European Commission—Education, Audiovisual and Culture Executive Agency (EACEA), under the program: Erasmus Mundus Doctorate in Membrane Engineering—EUDIME (FPA N◦ 2011–0014, Edition III, http:/eudime.unical.it). CIBER-BBN (initiative funded by the VI National R&D&i Plan 2008– 2011), Iniciativa Ingenio 2010, Consolider Program, is gratefully acknowledged. The synthesis of the inorganic nanomaterials has been performed by the Synthesis of Nanoparticles Unit of the ICTS “NANBIOSIS” at the Institute of Nanoscience of Aragon (INA)-Universidad de Zaragoza.
dc.publisherMDPI AG
dc.relation.urlhttps://www.mdpi.com/2077-0375/11/2/105
dc.rightsThis article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.titleBlock Copolymer-Based Magnetic Mixed Matrix Membranes—Effect of Magnetic Field on Protein Permeation and Membrane Fouling
dc.typeArticle
dc.contributor.departmentBiological and Environmental Science and Engineering (BESE) Division
dc.contributor.departmentEnvironmental Science and Engineering Program
dc.contributor.departmentNanostructured Polymeric Membrane Lab
dc.identifier.journalMembranes
dc.eprint.versionPublisher's Version/PDF
dc.contributor.institutionInstitut Européen des Membranes, IEM UMR 5635, Univ Montpellier, ENSCM, CNRS, 34070 Montpellier, France.
dc.contributor.institutionLaboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50018 Zaragoza, Spain.
dc.contributor.institutionNetworking Research Centre on Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain.
dc.contributor.institutionInstituto de Nanociencia y Materiales de Arago ´n (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain.
dc.contributor.institutionLAQV-REQUIMTE, Departamento de Química, Campus de Caparica, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
dc.identifier.volume11
dc.identifier.issue2
dc.identifier.pages105
kaust.personUpadhyaya, Lakshmeesha
kaust.personNunes, Suzana Pereira
dc.date.accepted2021-01-28
refterms.dateFOA2021-02-10T06:14:37Z


Files in this item

Thumbnail
Name:
membranes-11-00105-v2.pdf
Size:
4.426Mb
Format:
PDF
Description:
Publisher's version

This item appears in the following Collection(s)

Show simple item record

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Except where otherwise noted, this item's license is described as This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.