• Login
    View Item 
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    •   Home
    • Office of Sponsored Research (OSR)
    • KAUST Funded Research
    • Publications Acknowledging KAUST Support
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of KAUSTCommunitiesIssue DateSubmit DateThis CollectionIssue DateSubmit Date

    My Account

    Login

    Quick Links

    Open Access PolicyORCID LibguideTheses and Dissertations LibguideSubmit an Item

    Statistics

    Display statistics

    State Machine Fault Protection Architecture for Aerospace Vehicle Guidance, Navigation, and Control

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Type
    Article
    Authors
    Schulte, Peter Z.
    Spencer, David A.
    Date
    2020-02
    Permanent link to this record
    http://hdl.handle.net/10754/667234
    
    Metadata
    Show full item record
    Abstract
    Aerospace vehicles are vulnerable to hardware and software faults that lead to mission-critical failures. Advances in onboard fault protection capability are necessary as both terrestrial and space vehicles increase in autonomy. State machines offer a useful tool for system behavior modeling and fault protection. This study presents an architecture for aerospace vehicle fault protection, focusing on the guidance, navigation, and control subsystem. The architecture is designed to be generic for use with any vehicle or mission; modular with components that can be added, removed, or rearranged; and portable for ease of conversion to flight software. A subsystem taxonomy delineates relevant vehicle hardware and software components. A fault tree analysis is performed to identify relevant faults. To model system mode behavior, a functional state machine is defined. A diagnostic state machine is developed for onboard model-based fault diagnosis. Finally, a system block diagram illustrates how fault and mode components can be integrated with other aspects of the system. Two specific case studies are presented, including an unmanned aerial vehicle application and a Mars sample return orbital rendezvous and capture scenario, demonstrating that the generic architecture can be adapted to diverse vehicles in very different regimes.
    Citation
    Schulte, P. Z., & Spencer, D. A. (2020). State Machine Fault Protection Architecture for Aerospace Vehicle Guidance, Navigation, and Control. Journal of Aerospace Information Systems, 17(2), 70–85. doi:10.2514/1.i010673
    Sponsors
    This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1148903. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. FalconViz and the King Abdullah University of Science and Technology (KAUST) provided funding, in-kind support, and technical guidance for development of the unmanned aerial vehicle nervous system. The Mars Sample Return fault protection work was completed under contract (Federal award no. 1568300, and subaward no. 4103-79588) with the NASA Jet Propulsion Laboratory (JPL) at the California Institute of Technology. McClain Goggin at Purdue University completed most of the Mars Sample Return trajectory design work. Neil Smith at KAUST provided ideas, mentorship, personal support, and technical guidance that were invaluable to this study. Special thanks to Rob Lock (Mars Program Office) and Peter Meakin (Fault Protection and Autonomy Group Supervisor) at the JPL for their mentorship and assistance. Also, the JPL Mars Sample Return study team and Rendezvous Working Group provided much input by participating in breakout discussions. Many engineers at the JPL were consulted to solicit ideas for fault protection research. Presented as Paper IAC-18-C1.5.11x45016 at the 69th International Astronautical Congress, Bremen, Germany, 01–05 October 2018.
    Publisher
    American Institute of Aeronautics and Astronautics (AIAA)
    Journal
    Journal of Aerospace Information Systems
    DOI
    10.2514/1.i010673
    Additional Links
    https://arc.aiaa.org/doi/10.2514/1.I010673
    ae974a485f413a2113503eed53cd6c53
    10.2514/1.i010673
    Scopus Count
    Collections
    Publications Acknowledging KAUST Support

    entitlement

     
    DSpace software copyright © 2002-2023  DuraSpace
    Quick Guide | Contact Us | KAUST University Library
    Open Repository is a service hosted by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items. For anonymous users the allowed maximum amount is 50 search results.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.