Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells
Type
ArticleKAUST Grant Number
OSR-2017-CPF-2907-02Date
2020-01Embargo End Date
2021-08-26Permanent link to this record
http://hdl.handle.net/10754/667230
Metadata
Show full item recordAbstract
A low cost Fe–N–C catalyst on an activated carbon (AC) support was synthesized from inexpensive ferric chloride and chitosan precursors to enhance power production by microbial fuel cells (MFCs). The direct pyrolysis of preformed Fe(III)-chitosan hydrogel as a supporting scaffold created a porous structure on AC with a uniform distribution of Fe active sites. A maximum power density of 2.4 ± 0.1 W m−2 was obtained in MFCs using Fe–N–C/AC catalyst, which was 33% higher than the control MFCs using a plain AC catalyst (1.8 ± 0.03 W m−2). The Fe–N–C/AC catalyst was closer to the more efficient four electron transfer pathway for the oxygen reduction reaction (ORR) than the plain AC or chitosan-modified AC. The adoption of chitosan as the N-containing precursor and ferric chloride for the Fe–N–C synthesis added only 6% more in material costs in cathode fabrication, but produced a 33% increase in the maximum power density. This increased power makes the use of this cathode material both economically viable and a sustainable approach to enhance power production in MFCs given the low cost and wide availability of chitosanCitation
Yang, W., Wang, X., Rossi, R., & Logan, B. E. (2020). Low-cost Fe–N–C catalyst derived from Fe (III)-chitosan hydrogel to enhance power production in microbial fuel cells. Chemical Engineering Journal, 380, 122522. doi:10.1016/j.cej.2019.122522Sponsors
This research was supported by the King Abdullah University of Science and Technology (KAUST) (OSR-2017-CPF-2907-02), and Penn State University.Publisher
Elsevier BVJournal
Chemical Engineering JournalAdditional Links
https://linkinghub.elsevier.com/retrieve/pii/S1385894719319254ae974a485f413a2113503eed53cd6c53
10.1016/j.cej.2019.122522